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1. INTRODUCTION

This final report covers a five-year program conducted by SRI International (SRI) for the
Office of Naval Research. The focus of this program has changed over its five-year duration.
The original focus was on the theory of energy-assisted epitaxy, a continuation of the previous
contract. Our focus then shifted to the properties of ordered semiconductors grown by epitaxial
methods. Finally, in the last year of the program, our focus shifted toward the development of a
new material we had predicted, Inj_xT1,Sb.

Because of the volume of material covered in this program, we have organized this final
report as a brief summary of the work, with the contract-supported published papers presented as
an appendix. Because much of the work on the last topic studied, InTISb, has not been
published, we include a section on this topic.

2. THEORY OF ENERGY-ASSISTED EPITAXY AND THE THEORY OF
ORDERED SEMICONDUCTOR ALLOYS

The primary goal of this portion of the program was to understand energy-assisted
epitaxial growth of semiconductors and to predict and study the properties of ordered
semiconductors that might result. Subtasks include the study of surface energetics including the
effects of surface charge transfer; the development of an epitaxial growth model including the
effects of energy assist; the prediction of the ordered alloys that may result from the
nonequilibrium growth; and the study of the properties, including stability, of ordered materials
grown by nonequilibrium methods. A very brief summary of this work and major conclusions
drawn from it are given here.

The development of a growth model requires a reliable estimate of the interaction energy
between constituent atoms with various local environments. Once these energies are known,
epitaxial growth can be modeled using appropriate statistics. We have used the calculated pair
interaction energies in a quasichemical approximation to study the qualitative nature of
semiconductor surfaces. The effect of energy assist has been modeled through the consequent
change in surface entropy.

In this program we have shown that charge transfer between surface cations and anions
substantially affects the surface atom interaction energies and consequently the nature of the
epitaxially grown surfaces. Relaxation of surface atoms is found to reduce the surface energies
by of the order of an electron volt. We have also developed models of the surfaces during atomic
layer epitaxy (ALE) and molecular beam epitaxy (MBE) growth, using the calculated pair
energies in a quasi-chemical approximation.




An observed difference in the growth of HgCdTe on the (111) A and B surfaces, which
cannot be explained using simple bond-breaking energy arguments, has been explained using a
growth model based on our surface binding energies. A varient of the generalized perturbation
method (GPM) was developed to obtain cluster energies in semiconductor alloys.

Under this program we have also developed a model of segregation at the free surfaces
and interfaces of semiconductor alloys. This model has been applied to a number of systems,
including HgCdTe and HgZnTe. We have also developed phase diagram models using our
quasichemical formalism and applied it to several systems.

Several properties, such as the elastic constants and cohesive energies of the semi-
conductors, are necessary input for the growth models we have developed. Thus some effort
under this program was expended on refining some tight-binding models of these properties to
provide more accurate and predictive models on which the growth models were based. We have
also used these models to study native point defects in the semiconductor alloys.

A linear combination of atomic orbitals (LCAO) Hamiltonian was developed to apply to
the growth problem in the semiconctor alloys. While no papers were published on this work
because our funding was depleted before the work could be completed, a preliminary paper® (see
Appendix) on this work was written and applied to the ordering in GaAlAs, which we find to be
driven by surface interactions.

The important conclusions we have drawn from our work are:

» Surface sublimation and binding energies needed in growth models are surface-
orientation dependent

» Surface sublimation energies are not simply proportional to the number of first
neighbor bonds made to the surface

» Charge transfer among surface atoms is a large component of surface sublimation
energies and will be most important in wide bandgap materials

» Charge transfer among surface atoms can lead to ordering of the semiconductor
surface below some critical temperature, Tc

» A simple growth model incorporating our surface-dependent binding and sublimation
energies can explain the difference in the growth rate of HgCdTe on the (111)A and
(111)B surfaces

* A multilayer growth model was developed and applied to HgTe, CdTe, Si, and GaAs
to determine regimes in which layer-by-layer and three-dimensional growth occurs

*  Ordering in semiconductor alloys at the growth temperature is found to be metastable
in all systems studied

» Surface segregation is surface-orientation-dependent

*

S. Krishnamurthy and A. Sher, “Ordering in GaAlAs.”
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* Long-range alloy compositional oscillation away from a surface can occur metastably
below some critial temperature, and its formation is driven by the same mechanisms
which drives surface segregation

* Vacancy formation energies in pseudobinary semiconductor alloys are very sensitive
to the alloy environment

¢ Ordering in GaAlAs is driven by surface Coulomb interactions.

3. In1_xTIxSb AS A LONG-WAVE INFRARED MATERIAL

We demonstrated, based on full-potential linearized muffin tin orbital (FP-LMTO) based
self-consistent solutions to the Schrodinger equation with the exchange term expressed in the
local density approximation (LDA), that TISb in the zincblende structure has roughly the same
bond length (~ 2% smaller) as that of InSb, that it is a semimetal, and that it has a large cohesive
energy comparable to that of InSb. We also demonstrated that TISb minimum energy is attained
in the CsCl structure. However, for x < 0.15, the zincblende structured alloy was predicted to be
stable for attainable growth temperatures. We also predicted that at about x = 0.09 the band gap
of the alloy would be ~ 0.1 eV, the value needed for long-wave infrared (LWIR) focal plane
arrays (FPA). Because for the same band gap, 0.1 eV, the average bond energy of Ing 91 Tlp9Sb
is ~ 1.43 eV, compared to Hgo.78Cdo 22 Te at ~ 0.88 eV, we suggested the InTISb alloy may be a
more robust material for FPAs.

Several experimental groups are trying to grow the material, and one at Northwestern
claims to have done so.* There are aspects of the Northwestern work that are suspect, and while
we would like to believe they have prepared the material, we recommend judgment be withheld
until further tests are performed on their material.

4. COMMENTS ABOUT FPA SYSTEM ISSUES: WHAT ARE THE
SYSTEM MERITS OF Iny_xTIxSb

There has been a heated debate about the relative importance of individual pixel
detectivity (high quantum efficiency and low noise) and the spatial uniformity of this detectivity
over an array. Some types of nonuniformity are correctable in the output circuitry; others are
not. A theory says that if you are observing a high-background-temperature scene, then quantum
efficiency is less important to the noise equivalent contrast temperature (NEAT) (related to the
minimum resolvable temperature in a scene) than the spatial nonuniformity. However, for low-

Y .H. Choi, C. Besikci, R. Sudharsanan, and M. Razeghi, “Growth of Inj_xTlxSb, a new infrared material, by
low-pressure metalorganic chemical vapor deposition,” Appl. Phys. Len. 63, 361 (1993).
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background-temperature scenes, the reverse is true. The arguments center around the critical
scene temperature Tcg that separates these regions and the kinds of nonuniformities it is practical
to correct. Some people contend that Teg lies below 0°C, so only Arctic and space observatons
require high quantum efficiencies. Others place T¢s well above all typical earth backgrounds, so
a high quantum efficiency is always beneficial. From what we have seen from cameras made
from different materials, we believe the high-quantum-efficiency supporters are right; besides
that, it is logical.

One important source of incorrectable nonuniformity is a quantum efficiency that has a
sharp spectral dependence beyond its cut-on. Thus, a flat quantum efficiency is a distinct
advantage.

Being able to build the signal processing circuit on the same chip as the detector array is
also highly desirable. This is not possible at present for HgCdTe, so the FPA is In bump bonded
to a Si chip that contains the readout circuits. The thermal expansion mismatch between these
dissimilar materials limits the size of practical FPAs made this way. If larger arrays are needed,
they .nust be assembled in a mosaic pattern, which limits the picture quality and adds complexity
to the system. This is why there is so much effort these days devoted to growing HgCdTe on Si
substrates. The problem there is that the lattice constant difference is ~19%, so dislocations are
plentiful, which again degrades device performance.

There are many other system issues, but this minimal set suffices to set the stage for the
major arguments surrounding the relative merits of LWIR alloy detectors like HgCdTe and
InTISb, quantum well detectors, and strained layer superlattice detectors.

HgCdTe 256 x 256 pixel arrays have been built with NEAT = 6 mK. This is more than
adequate for many applications, but it is hard to do with high yield, so these arrays are expensive.
Some strategic applications require much larger arrays. The quantum efficiency of HgCdTe is
~70%, and spectrally flat, so corrections to spatial nonuniformity are reliable over a large
dynamic range. CdZnTe currently is the best substrate material. It is good, but not superb, since
the sizes that can be prepared are limited, it has moderate dislocation densities, and some
troublesome impurities tend to migrate into the active material. Some of these properties are
being fixed.

The quantum well and strained layer superlattice detectors are basically built on GaAs
substrates. Thus, the signal processing can be done on the chip that holds the array. However,
both materials have low quantum efficiencies (< 10%), and they have sharp spectral variations.
The supporters of these devices contend that because they are constructed from II1-V rather than
II-VI material, their relative robustness will lead to good spatial uniformity (limiting the need for
corrections), few dislocations, and generally high-quality material. Reasonable performance has
been demonstrated on 64 x 64 arrays, which is quite good for a newly evolved technology.
However, they were not as good as current similar HgCdTe arrays. Thus, quantum well and
superlattice supporters invoke expectations based on intuition and how well devices have worked
in view of the immaturity of the technology. They are saying, “bet on what you don’t know
about, rather than spend your effort to fix the troubles you have encountered in HgCdTe.” They
have a firm, legitimate claim to better substrates compatible with readout circuits.




MWIR InSb detectors arrays are slightly better than MWIR Hggo 7Cdp 3 Te detectors, but
the two are close competitors. LWIR Hgg 7Cdg 3Te is a much more difficult material, for a wide
variety of reasons, but much of the trouble can be traced back to the fact that the material is
70% HgTe (bond strength 0.81 eV/bond) and 30% CdTe (1.1 eV/bond).

Ing.91T10.9Sb should have optical and electronic properties similar to those of
Hgo.78Cdo22Te, but it is 91% InSb (1.43 eV/bond) and only 9% TISb (1.34 eV/bond). The
constituents’ bond length difference in InTISb is not as small as that for HgCdTe, but it is only
~2%—still a near-lattice-matched alloy. The most important feature is that the average bond
strength is much larger, which will cause native-point defect populations and other imperfection
densities to be much smaller and less troublesome.

The hope for a fast utilization of Ing 93 Tlp 09Sb, once it is grown, is that it will be
essentially InSb-like in its defect properties. If this is the case, then it will be possible with only
slight modifications to substitute InTISb epitaxial layers on InSb substrates into an InSb FPA
production line, use essentially the same readout circuitry, and end up with an LWIR response
rather than MWIR. If the LWIR characteristics are as good as we project, then a superior
(cheaper) system is the result. We will have 1o wait to see.
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phase diagrams and microscopic structures of (Hg,Cd)Te, (Hg,Zn)Te,
and (Cd,Zn)Te alloys
R.S. Patrickand A.-B. Chen

Auburn University, Auburn. Alabuma 36849

A. SherandM.A. Berding
SR International. Menlo Park, California 94025

{Recetved 3 November 1987; accepted | March 1988)

A cluster theory based on the quasichemical approximation has been applied to study the local
correlation, bond-length distribution. and phase diagrams of the [I-VI pseudobinary alloys
Hg, . .Cd,Te. Hg, . ,Zn Te and Cd, ,Zn Te The cluster energy is calculated by letting it
relax in some effective alloy medium and then considering the contributions from the strain and
chemical energies. Two different models are presented to simulate the alloy medium. While both
models show that ali three alloys have nearly random distributions, the signs of the local
correlation prove to be sensitive to the alloy medium chosen for the energy calculation. Good
agreement s found between experimen¢ and the bond lengths and phase diagrams in both models.

1. INTRODUCTION

This paper is a summary of our theoretical investigations'™
;mto  the statistical properties of Hg, ,Cd,Te.
Hg, . . Zn,Te.and Cd, _ ,Zn, Tealloys. A pnmary objective
of these studies 1s to correlate microscopic quantities such as
bond lengths and atomic distributions to macroscopic quan-
tities such as internal strain energy, phase diagrams, and
mechanical properties of the alloy (e.g.. bulk modulus).

The theory is based on a generalized quasichemical ap-
proximation (GQCA),' where the usuai pair interaction is
replaced by a microcluster unit of arbiirary size. This entails
the calculation of cluster energizs in some effective medium
along with a statistical formuiation. Once the cluster ener-
gies are available. the cluster populations can be computed,
which in turn yields the mixing free energy and other quanti-
ties mentioned above.

The next section will present a summary of the statistical
theory. (Full details are provided in Ref. 1.} Section I de-
scribes the calculation of cluster energies along with a dis-
cussion of effective allov media in which the clusters are
placed. Section IV will present results of some quantities
calculated with the theory. Section V contans conclusions
and discussions.

. GQCA STATISTICAL THEORY

For a zinc-blende alloy of the form A, _ B, C at a given
temperature 7T, the mixing free energy AF in the GQCA is
given as

AF=A8E-TAaS= Y M, -TAS, (H

where M, is the number of clusters in the alloy with excess
cluster energy €, and S is the configurational entropy,

AS=klng. (2)
where g 1s given as
h'A M! oM
g—m ——H(x‘,) . (3

v

I
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InEq. (3). V. g, are the number of A (B) atoms in the alloy
with.V =V, + Ng, x%1s the a priori fraction of clusters of
thej type (random distribution ), and M is the total number
of clustersin the alloy (e.g., M = X M, ). Using Egs. (2) and
(3), Eq. (1) can be rewntien as

AF=M z €x, + sz x,(In x,/xj’)l
+ NikT(xlnx +~ (1 —x)In(l —x)]) . 4

where x, = M, /M is the fraction of clusters with energy €.

The equilibrium vaiues of the probabilities {x } are ob-
tained by minimizing AF with respect to x, while obeying the
following constraints on the alloy composition

z_\'_,=1. (s)

ZnI(B).\', = nx,

where n is the number of alloving atoms (A and B) per
cluster. The result of a variational calculation (equivalent to
asteepest descent argument given in Ref. 1) of AFin Eq. (4)
with respect to x, subject to the constraints of Eq. (5) leads
to the following jth order equa.ion for an effective activity
coeflicient (1)

nx=Smie " " g/q, (6)
where g is the single-cluster grand partition function.

g= S g e 7Y, (7
and g, is the number of ways of arranging the alloying atoms
in a cluster with energy ¢,,

g =nlfn - (8)

Once 7 is found, the cluster population probabilities are ob-
tained via the equation

/9. (9)

— ;= e/kT
II —g/Tf (4
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which should be compared with the random distribution
X =ge(l-x)""". (10)

A varniational calculation with respect to alloy volume is not
performed because 1t has been shown expenimentally** that
the corresponding change 1n alloy volume with concentra-
tion follows Vegard's law. Calculations done* show that the
deviation of average bond lengths from the simple weighted
average 1s <0.01 A for all 11I-V and [1-V1 alloys studied.
The free energy can now be calculated from Eq. (4), once
the cluster energies {¢, } are known.

iit. CLUSTER ENERGIES AND BULK MODULUS

The alloy interactions in a real pseudobinary cannot be
accurately described by the simple fixed-value pair energies
often assumed in statistical models. This is particularly true
for an alloy with sizable bond-length difference (e.g.,
Hg, .,Zn,Te), where the strain energy dominates the mix-
ing enthalpy. To write the AE as a sum of cluster energies
{€,} in the GQCA, each effective ¢, must include all the
interactions inside the cluster plus one-half of all the interac-
tions across the cluster. This can be achieved by embedding a
cluster in an effective alloy medium.* The smallest cluster to
use is a four-bond cluster centered at the alloying A and B
atoms. This choice of cluster, however, does not yield infor-
mation about the local correlation. The next smallest reason-
able cluster that considers local correlation is the 16-bond
cluster with a central C atom and four alloying atoms bound
to the environment by 12 second-neighbor C atoms (Fig. 1).
Note that this 16-bond cluster differs from the five-atom,
four-bond cluster used by other workers.”™ The 16-bond
cluster choice means that the counting scheme for the con-
figurational entropy given by Eq. (3) is exact, since no two
clusters share the same alloying atoms. Approximations in
the theory occur in the cluster energy calculation, where the
cluster—luster interactions are treated as a mean-field theo-
ry.

For the cluster energy calculation, {¢, }, we place the 16-
bond cluster in an alloy environment and then ailow the
cluster to relax. The resulting strain energy associated with
bond length lattice mismatches is treated with the valence
force field'” (VFF) as in Ref. 11 and other cluster model
calculations. The strain energy in the VFF is expressed as

Fi1G. 1. The basic microciuster
umt used for A, ,B C zinc-
blende compounds. It includes a
central C atom, four neighboring
A and B alloying atoms in the
first shell, and 12 second neigh-
bors to the central atom in the
second shell (shared with other
clusters).

/
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where d i1s the average alloy bond length. Ad,d, 15 the
change of the scalar product of two bond vectors due to dis.
tortion, and @ and 3 are the two-body radial and three-body
angular force constants, respectively.

The excess energies due to the change in chemical enyvy.
ronment in an alloy are treated using Harrison's mode!. "
where it is known as the metallicity. For a pair of AC and BC
bonds, this chemical energy is

€rem (AB) = A€ (A) + A€, (B), (12,
where
A¢,, (A) =2( lag Hib)?  ay Hby)® )
€,(A) —¢€,(B) €,(A)} —€,(A)

(13,

and a similar expression for A¢,, (B). InEq. (13). Aand B
represent AC and BC bonds, respectively, and ¢, and ¢, are
the energies of the bonding and antibonding states denoted
by |6 ) and 'a). respectively.

To obtain the cluster energies, we are required 1o solve the
problem of finding the equilibrium conngurations of the
atoms in the 16-bond cluster embedded in an infimte alloy
medium with correct bond lengths and elastic constants *
While we have yet to carry out the numerical problem to 1«
desired accuracy, we have investigated two different ap-
proximations which simulate the alloy environment. For the
first medium, hereafter referred to as the discrere modvi. the
cluster is placed in a medium in which all atoms on the third
shell and beyond are fixed at their virtual-crystal approxima-
tion (VCA) positions. It was shown in Ref. 11 that the trun-
cation of the relaxation medium overestimates the actual
strain. To counteract this overestimation, the bond-angle
terms in the VFF across the cluster are discarded. while
those within the cluster are retained. This same procedure
was done for the case of impurities in alloys with good results
for the bond lengths and mixing enthalpies.'' The second
medium, or elastic continuum model, replaces the atoms
outside the second shell by an elastic medium. We further
assume that all atoms in the elastic medium (i.e.. second-
shell atoms and beyond the second-shell radius R ) only have
radial displacements which are inversely proportional to the
square of the radius. The strain energy for the elastic contir-
uum is now given as'’

€aran = Rcu: ’ (14

where u is the displacement at R and C is an effective shea
stiffness coefficient given by C = 1.6% (C,, — C,. + 3C,,)
Table I lists the values of the bond lengths d, the force con
stants a and [, and the coefficients C for the three 11-VI
systems studied.

In the calculation of a particular cluster energy, the sum o
the chemical energies within the cluster plus the strain encr-
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Tamk [ The bond lengths o, torce constanis « and 4. and eflective shear
coefficients C for the three 1i-Yivompounds 1 Fora detailed descniption of
these values, see Ref 11

InTe CdTe HeTe
diA) loiT 2 e 2789
QEN/my 29 358 2037 040
JiNsmy 400 272 278
Ci« 10" ergs-em’y 6143 33 04

gies of th :luster and the medium s varied with respect to
the posit 1s of the cluster atoms until a minimum value €.,
is reacht  The cluster energy ¢, for the A(4 — n)B(m)C

cluster becomes the sum of €,,,, plus one-half the averaged
chemica!l energies of this cluster with the cluster medium:

€, = € T 972[0(1 —x) + (4 — mix]e,m (AB).
(15)
.40 -
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0.00 o 0.8 1.0
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FiG. 2. Hg(3 — /3 Znt ;) Te cluster energies per 16-bond microcluster as a
function of ZnTe concentranon for clusters with differing numbers of Zn
atoms. {a) discrete model and (b) elastic contnuum model
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The long-range Coulomb interactuons” were also estimat-
ed and found to be very small compared 10 the strain and
chemical energies. Energy corrections that occur due to
shifts in d-level energies via first-neighbor p—d interactions
with antibonding states were also estimated and found to be
small ( <0.1 kcal-mol). In this p—d interacuon. it 1s sur-
mised that the shifts due to the cation d levels counterbal-
ance the shifts due to the anion occupied p orbitals. leaving
the average energy relatively intact.

For the calculanon of the bulk modulus® B. one calculates
the change of the average energy response of the clusters in a
compressed medium (with external pressure 6P)

BE = M (5¢,) . (16)
which in turn vields the bulk modulus from the relationship
SE = (8P4 /(2B). (17)

where Fis the volume of the alloy. Results® show the bulk
meodulus of the pseudobinary allov as a function of concen-
tration bows only slightly from a straight-line average (8).

B=B[1-3x(l -x)(AB/B)*], (18)
0.00$ o
“01_'26.?' ‘Ciscrece:
n (B
-0.000 .
H
¢-0.00s
o
i
>
2
-0.010¢
.
0-91%5 0.5 1.0
{a) x
0.005 —
uv.‘_.:d.n iElastac Continsum
note
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-0.000
:
:
§-0.00% ) 4
g
<
: |
e
-0.010} 4
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Fii. 3. Hgtd — )Cd( N Te cluster energies per 16-bond microciuster as a
function of CdTe concentration for clusters with differing numbers of Cd
atoms. {a) discrete model and (b) elastic continuum model
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where the fractional change in the bulk modulus is < 1% for
all cases.

IV. RESULTS

Figures 2(a) and 2(b) show the clister energies per mi-
crocluster of Hg, _ , Zn, Te for microclusters with diffenng
numbers of Zn atoms. Figure 2(a) uses the discrete model
while Fig. 2(b) uses the elastic continuum model for the
alloy medium. Note that while the energies for the discrete
model are almost symmetric, those from the elastic contin-
uum model are rather asymmetric about the stoichiometric
composition x = 0.5. This is due to the fact that the averaged
a value varies slowly while the averaged C value changes
considerably from HgTe to ZnTe (see Table ). Comparison
of the cluster energies between the two models for
Cd, _,Zn, Te is similar to that for Hg, _ ,Zn, Te. The re-
sults for Hg, _,Cd, Te, however, are different'* [Figs. 3(a)
and 3(b) ] from the other two alloys in that the strain energy
is not dominant. Since there is very little variation of the 8

1000 x

ng,_ zn Te (Ducru;x

Ml_-ln.h (Tlastic Continuwm)
4

L W) 5.5
{b) x

F1G. 4. Deviations of the Hg(4 — j)Zn( /) Te cluster population from those
of a random alioy as a function of ZnTe concentration for clusters with

differing numbers of Zn atoms: (a) discrete model and (b) elastic contin-
usum model.
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values across the alloy concentration, the cluster energies are
more or less symmetnc about x = 0.5 for both models.
Figures 4(a) and 4(b) show Hg, _, Zn, Tedeviation from
randomness Ax, = X, — x for both alloy models at 1000 K
Similar results were obtained for Cd, _,Zn, Te. Note that
while both discrete and elastic continuum models predict
very small deviations from a random alloy, the tendency of a
particular cluster to be greater or less than a random distn-
bution differs for each model. Although the signs of Ax, for
Cd, _,Zn, Te in the elastic continuum model! agree with
those obtained from a measurement of the chemical shifts."
the magnitudes of the experimental Ax, appear to be much
larger than the calculated values. On the other hand. the
discrete model predicts a small reverse trend. If the expen-
ments are correct, then there is some major interaction miss-
ing from all models published to date. The cluster popula-
tions for Hg, _ . Cd, Te (discrete model) are given in Fig. o

1000 «

Cdl_.h-lh (Dascrete)

2.8% v

Cdl_.ln‘h {Elastic Continuus)

1000 x

2.80

2.7%
-
<
2.7
2.65
260473 ) 7.0
{b) x
F16.5.Cd, _,2a,Te alloy average CdTe and ZnTe bond lengths as a func-

tion of ZnTe concentration. The solid labeled curves are the average valucs
the dashed curves are the extent of the rms vaniations, and the heavy soir!
line is the average bond length corresponding to Vegard's rule: (a) discrete
:20del and (b) elasuc continuum model. Experimental data from Rel 15
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Fic. 6. A, B, C alloy average constituent bond lengths as a function of B concentration. The solid labeled curves are the average values, the dashed curves

are the extent of the rms variations. and the heavy sohid line is the average bond "= . cosresponding to Vegard's rule: (a) GaAs,

P, discrete model. duta

from Ref. 16 (b) GaAs, P, elasuc continuum model. data from Ref. 16: 7¢) In, ,ua, As. discrete model. data from Ref, $: (d) In, .Ga, As. elasue
continuum model, data from Ref 5. (¢) Zn, ,Se, Te. discrete model. data from Ref. 6: and () Zn, ,Se, Te. elastic continuum model. data from Ret' 6
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of Ref. 13. [Please note a correction in Figs. 5 and 6 of Ref.
13 1n that the cluster labels n, (Cd) = $and ,(Cd) =0in
both figures are reversed.] While there is still a small devi-
ation from randomness. the overall trend of the cluster popu-
lations s different than the discrete results presented here for
Hg, . .Zn Te and the experimental results of Ref. 14. Since
the magnitudes of the calculated cluster populations are very
small and the experimental results for Hg, _ ,Cd, Te are not
as simple as for Hg, . ,Zn,Te, we have not attempted to
make a comparison.

The Cd, _,Zn, Te bimodal bond-length distributions at
1000 K along with the rms deviations and average values are
shown in Figs. 5(a) and 5(b) for both alloy models. Com-
parison of the two shows that the elastic continuum model is
closer to the experimental values'® than the discrete model.
Similar bimodal results were obtained for Hg, _ ,Zn, Te,
but different results for Hg, _,Cd, Te. in which the shorter
HgTe bond gets shorter and the larger CdTe bond gets long-
er in the alloy. The average bond lengths for some 111-V
alloy and II-V1 alloys for which experimental data are avail-
able®®'*!* are shown in Figs. 6(a)-6(f). The only conclu-
sion that we can draw from these comparisons is that both
models gave a semiquantitative prediction of the bond
lengths. The data cannot be used to disqualify either model.

The phase diagrams for the three II-V1 alloys using the
discrete model are shown in Figs. 7-9. The solid free energies
were calculated from the GQCA while for the liquid free
energies we have adopted a simple regular solution with a
single adjustable mixing enthalpy parameter [e.g.,
AE = Qx(1 — x)]. The solidus/liquidus lines were then ob-
tained by using the common tangent method' along with
Vieland's formula but with no further adjustable param-
eters.'” The parameters used for each phase diagram calcula-
tion are given in the figure captions. Inthe Cd, _,Zn Teand
Hg, _ . Zn,Te cases, the discrete mode! gave slightly better
agreement with experimental data'*-*! than the elastic con-
tinuum model. For Hg, _, Cd, Te. where the strain energy is
small, the two models give the same curves.

1400. v v v v

m‘__ca.n {Diecrete)

1300.

1200.

TERP (X)

1100.

1000.

900. 45 0.2 ] A 0.0 1.0

FiG. 7. Hg, . .Cd, Te phase diagram (discrete maodel). Values for the liquid
interaction parameter, melting temperature, and heats of fusion are
ft= — 1.00kcal/mol. T3\, = MIK. 7T, = 1365K, AH 5,r, =8.727
kcal/mol. and AHM T, = 12.012 kcal/mol. Experimental data from
Ref. 18.
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1600. .
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z .
& 1300. } ]
-
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1100. : . 4 1
1000. } * ]
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F1G.8 Hg, . .Zn,Te phase diagram (discrete mode!). Values for the hiquid
nteraction parameter. melting temperature, and heats of fusion are
1= - 3.50keal/mol. T 0y, =M43IK. T7r, = I1S60K.AH 5, =872°
kcal/mol. and AH 7,;, = 15.600 kcal/mol. Experimental data. A Ref. 19,
@ Ref. 20

V. SUMMARY AND DISCUSSION

A generalized quasichemical approximation has been de-
veloped to treat the local correlation and free energies for
semiconductor alloys. The two approximate alloy models
considered produce semiquantitative results for bond
lengths, mixing energies, and phase diagrams. While both
models predict small deviation from randomness for all
three I1-V1 alloys studied here, the population is sensitive to
the model choice. However, the procedure has not been car-
ried out for the infinite medium. Future work will incorpo-
rate more exact models for the alloy medium. In addition.
better liquid free energy models should be used for the phase
diagram calculation. However, more systematic, detailed,
and accurate experimental measurements on these quanti-
ties are needed to provide checks on the theory. Further-

1600.

p—— v

C4, 2n Te (Discrets)
X R

i

1550.

1500.

TENP ()

1480,

1800.

135095 0.2 0.\ 0.5 0.8 7.0

FiG.9.Cd, _,Zn, Te phase diagram (discrete model ). Values for the liquid
interaction parameter, melting temperature, and heats of fusion arc
N = +0.160 kcal/mol, Ty, = 1365 K, T7,,, = 1560 K. &H
= 12.012 kcal/mol, and AH 7,;, = 15.600 kcal/mol. Experimental data
from Ref. 21.
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more. the theoretical results (particularly the atomic distn-
butions and the bond lengths) should be used to study more
properties, e.g., surface ordenng and segregation, phonon
spectra, deep levels, transport, nuclear magnetic resonance,
etc.. to have a broader check and applicaton of the theory.
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CORRELATIONS AND ALLOY PROPERTIES:
GROWTH, VACANCIES, SURFACE SEGREGATION *

A. SHER and M.A. BERDING
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and

A.-B. CHEN and R.S. PATRICK

Physics Department, Auburn Universiy, Auburn, Alubama 36849, USA

The properues of alloy semiconductors are influenced by the state of order of the matenals. Some properues. such as the liquidus
and solidus curves, are relative insensitive but others are strongly affected. We first demonstrate which aspects of bonding interaction
mechanisms impact the correlaton state. We then deduce the effect of the correlation state on liquidus and sohdus curves. on surfage
segregation. and on vacancy densities. Surface segregation is a concentrauon vanation of the alloy constituents away from surfaces.
and 15 dnven by Schottky vacancy-free energy differences between the consutuents in the bulk and on a surface. The segregation
profile for allovs equilibrated above a critical spinodal transition temperature exhibits a3 monatomic vanation decaving over a few
atomic layers from the surface to the bulk value. However, long-range concentration oscillations are predicied below the cnitical
temperature. These oscillations may account for the long-range order observed in some MBE- and MOCVD-grown alloys (eg.
InPSb). The total free energy of this new ordered phase lies between that of a homogeneous but highly correlated alloy and that of o
spinodally decomposed allov. The phase. if it exists. would be locked into its metastable state by the presence of the surface.

Reundary condinens at the interface hetween the epitaxial laver and the substrate would also affect the results

1. Introduction

Many groups have been studying the correla-
tion state of tetrahedrally coordinated pseudo-bi-
nary semiconductor alloys [1-4] of the form
A, _ B.C. They all begin by decomposing the solid
into microclusters, usually five atoms consisting of
a central C atom and its four surrounding neigh-
bors. The excess energy of the cluster relative to
the concentrated weighted average of similar clus-
ters of the AC and BC compounds is then calcu-
lated in a variety of formalisms and. while there
are similanties in the gross trends. the groups
generate rather different detailed excess-energy-
versus-concentration curves. These excess energies

* This work was supported by AFOSR Contract F49620-88-
K-0009, NASA Contrast NAS1-18226, ONR Contract
NO00014-88-C-0096, and NASA Granis NAG-1-708 and
NAS1-18232.

are then inserted into statistical mechanics expres-
sions for the populations of the various microcius-
ters. and the excess free energy is then calculated.
While all the groups use grand canonical ensem-
bles for the microclusters. they differ in their
treatment of the entropy that appears in the free
energy. A number of alloy properties are calcu-
lated. e.g.. the alloy bond-length variation [1-8].
the mixing enthalpy [1-8]. the critical order-dis-
ordered transition temperature and low-tempera-
ture phases [6]. the cluster populations as a func-
tion of temperature {1-8). and liquidus and soli-
dus phase diagrams [9]. Despite the differences in
calculation methods. the bond-length vanations
and mixing enthalpies predicted by the different
groups are nearly the same and agree reasonably
well with experiments {5.10]. There are larger dif-
ferences among the predictions of other proper-
ties: unfortunately, they are also less susceptible
to direct experimental measurement.

0022-0248 /89 /$03.50 © Elsevier Science Publishers B.V.
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In this paper we first identify the reasons for a
lack of sensitivity to some details of the theory.
and which aspects of the theorw must be correct to
make accurate correlation-state predictions. We
then display some solidus and liquidus curves and
examune the sensitivity of distnbution coefficients
to features of the theorv. Next, we present vacancy
energies for several allovs and draw tentauve con-
clusions about their effects on diffusion, doping,
and i1on beam processing. Finally. we present fea-
tures of the theoryv of surface segregation in semi-
conductor alloys.

2. Correlations
2.1. Generul theory

We and others [2-4] have demonstrated that
there are alwavs correlauons in alloy semiconduc-
tors. Here we summanze our previous work. focus-
ing attention on those aspects that mav help us to
identify what may be missing from the interac-
tions dnving correlations and those features to
which correlations are insensitive. We consider an
average population X, of five-atom clusters includ-
ing sixteen bonds (most others treat four bonds
only). Five-atom clusters of the form A,_, B, C
can be shown to be distributed in grand canonical
ensembles of the form

f/:gl e'l‘uﬂ/‘(’,)»kr/q({(/}-#B). (1)
where the partition functon is
J
q({(/}'“B)E Zg/ c”‘""'—‘/).’kr' (2)
7=0

and g, is the degeneracy of cluster ;j=0,
1.....J(4<J <2%). n, is the number of B atoms
on cluster j. ¢, is the excess energy of cluster j
relative to the average € = (1 — x)e, + xeg (called
4, by Sher et al. [1]). ¢, and ¢y are cluster
energies of the pure AC and BC compounds. k& is
the Boltzmann constant, and 7 is the absolute
temperature.

If the clusters do not have their normal count-
ing degeneracies gl" = (:() split, then we have g =

19
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g','. the binomial coefficient. and J = 4. The chem-
wal potenual is set by insisting that the composi-
1on X 1$ correct.

4 = Z"r;;'
J

—
1.2

If we make a transformation to the reduced
excess-energies representation.

A',=()—(1—§n,k)(,,——§nlcj (4)
(called 3 by Sher et al. [1)). then X, becomes
Xo=g e yg({3,) . uh) (5)
where

“’leJ'B—-li((.l_(n)~ (6)

Note that we have 4,=13,=0. so at least two
members of the set {3 } vanish. More important.
only the reduced excess energies actually drnive the
cluster populations. We shall see shortly that the
energies of the {1} set are often five to ten times
smaller than those of the (¢ } set. Most of the
strain contribution to the {¢,} set subtracts out
and contributes little to the X, values.

There 1s an additional effect. It can best be
appreciated when stated as a theorem. If (2) 3, =
A, +n,8 and if (b) g, =(; ). then J =4 and

.?J=x/“5g;’(1—x)4_"/x"/, (")
the populauons x? of a random alloy. Thus. no
matter how large the constant § may be. as long
as the energies 3 vary linearly with the number of
B atoms on the cluster n, and th. counting degen-
eracy 1s not split, the alloy 1s random. In fact
8 =0. since we have 4,=4,=0. Strain energies
from bond-length differences between the con-
stituents, chemical energies. and electron-electron
tnteractions all have some nonlinear variations
with n . The degeneracy g7 is split by coherent
strains or temperature gradients. anything that
establishes preferred directions for the locations of
A and B atoms on a cluster. These splittings
always establish a preference for one type of clus-
ter in a particular orientation (e.g.. for a strain in
the (111) direction, A ;B with the B oriented along
the (111) axis), and therefore drive deviations of
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the {X,} set from {x”} toward compound forma-
tion, and 1f the sphtungs are large enough. even
toward long-range order. The effect of the en-
ergies {J } can dnve the {X } set toward either
compound formation or spinodal decomposition,
depending on the relauve bond length and bond
energy.

The excess free energy of an A
then be wntten as

B.C alloy can

[ 4

AF=AE-TAS. (8)
where the excess energy 1s
AE=M} ¢X,. (9)

/

with M being the number of clusters. The excess
entropv is

{ 1

J
M
UT‘

]

with M = x M (see Sher et al. (1] for the justifica-
tion). Thc lolal number of clusters, M, 1s related
to the number of Bravais lattice sites, N, in the
crystal by M= 1N for a 16-bond cluster and

= N for a 4-bond cluster. Egs. (9) and (10) can
be rewritten for the 16-bond cluster as

X[g‘,(l—.\')a " (10)

AE=},N[(1-\ €, + xe, + ZA J (11)

and in general the excess entropy is

AS = —kN [(1 —xVIn{l-x)+xInx
M -
t N (%, In x,— X, In x, )]
/
N _ ,P-’ N
- xR T (). m)
’
(12)

Note in the first equality in eq. (12) that M /N is

unity for a 4-bond cluster and 1/4 for a cluster
with 16 bonds. In the 16-bond cluster, after sub-

20

stitutions from egs. (3) and (7). the (1-x) Il -
x)+ x In x term s exactly canceled by a poruon
of the third term in the brackets. This occurs
physically because. in the 16-bond cluster. all the
bonds associated with a given substituted atoms
are 1n the cluster: in the 4-bond case. however.
bonds from each substituted atom contribute to 3
different clusters. Several features of eqgs. (11) and
(12) are noteworthy. First. ¢, and ¢, are functions
of x but in lowest order are temperature indepen-
dent. For bond-length-musmatched allovs. they
vary with x roughly as ¢, and €, = €,(1 -
x)°. so that we have

. L2
=€,X

JE=N|Qx(1-x)+ LA, (13)

!

where the muxing enthalpy parameter. £, 15 ap-
proximately

Q=1 -c'])\] (14
and nearly independent of x if € = €. as is often
the case. The second term 1n eq. (13) 1s usually
small compared with the first and contains all the
temperature dependence. However, when egs. (51
(12). and (13) are inserted into eq. (&) 1o obtain
AF atermin TAS exactly cancels the second term
in eq. (13). Thus. it 1s impossible to determine the
temperature variation of AE from a measurement

of AF. The expression for 3 F becomes

;e

AF= ;V[.Q_\'(l —x) +xpy

— kT ing({a,). py)]. (15)
The chemical potential uj, is determined from eq.
(3) and both pj and ¢ are generallv temperature
dependent.

In a much different formalism than ours []]
and under more highly constrained conditions.
Ferreira et al. [4] later reached some of the same
conclusions presented in this section. The result
that the { X, } set depends only on {1 }. and that
{3} <€, because most of the strain contribu-
tions cancel in the {3 } set. 1s a direct conse-
quence in our approach of the concentration con-
servation constraint. eq. (3). No assumptions r.-
stricting 4 to be x independent are made in our
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development. and in fact we find 3 does have a
slow vartation with x in the examples presented in
the next secuon.

Numerical resultys

We have caleulated (e}, 1A ). ph (3~ X))
AECT ) and AF(T) for a number of allovs: fig. 1
shows those for Ga, _ In _As. The energies €, were
calculated as discussed in detail in ref. {1]. The
sixteen-bond cluster was attached to ngid medium
at the virtual crvstal positions in the third shell
from the cluster center. The atom positions inside
the third shell were adjusted 1o minimize the strain
and chemical energies. The energy €, 1s the total
energy of the sixteen bonds with the atoms in their
minimum energy posittons. The variauons of atom
bond lengths 1n different allovs are well predicted
by this method.

The vanatuon of {e | with x. and that of {3 }
are quite different. As 1y evident from the curves,

the 13} set an order of magnitude smaller than
the fe | values. and most of the curvature identi-

fied with the strain contnibution has subtracted
out. The excess enthalpy JE has onlv a small
temperature dependence. as we antucipated. The
excess free energy AF at 600 K has a neganive
curvature at which indicates that the criu-
cul transtion temperature 1s below 600 K.

The reasons why bond lengths and nuxing en-
thalpies agree with experntments in a variety of
gquite different cluster model approximations are
discussed extensivelv in refs. [2.8.9]). The underly-
ing cause for the mnsensiuvity of bond lengths is
that if the region outside the cluster is allowed to
relax in the energv-munimization procedure used
to identify the bond lengths. the strain from the
angle-restoning forces tends to be canceled. Thus.
muodels that include angle-restoning forces and
some outside relaxation or that ignore angle-re-
storing forces and outside relaxauon both predict
the bond lengths correctlyv. However, the two
classes of models predict different {€,} sets. The
set based on a suff extenior (no relaxation) is
larger with sharper x vanations. However. as we
have seen. most of this strain contnbution sub-
tracts from the {1} set. Thus the populations
are not as different in the two tyvpes of

=L

R
vV

Correlarions and sy properies kW
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approach as mught have been expected. The excess
entropy £ should differ. However. the vanious
groups abyo include chemucal energies. and those
using suff-extertor approxumauons often report
larger negative chemical terms so mixing enthalpy
parameters agree with expennment. There s no
general theorv in disordered allovs of how 1o
calculate cluster excess energies. for which the
small parameter of the theory s defined. While
start was made on this theory [11]. 4 more com-
plete version 1s needed to make convincing pro-
gress.

We have also shown that onlv the small {3 ¢
set dnves deviatuons in the populations X away
from randomness. Moreover. if 3 =8n 15 hnear
in n the number of B atoms. then despite the size
of 8. the populations are still random. Thus. el-
fects that would otherwise be considered small
may compete with the larger energies retained 1f
they have the proper nonhnearity. We are examin-
img several possibilities not incorporated 1n our
present results. These include effects caused b
screening in the composition range where narrow -
gap allovs dre semuimetal. direct second-neighbor
chemical interacuons treated in the context of
Harrison’s model. electron-electron Coulomb in-
teractions driven by polanty differences between
the constituents, and compaosiuon variatons of the
elastic constants.

3. Solidus and liquidus phase diagrams

We have reported on high-temperature phase
diagrams of a2 number of allovs [11]; two examples
are presented in figs. 2 and 3. The sohdus and
hquidus curves, figs. 2a and 2b. were calculated
using our sohd free energyv. following the logic of
Stringfellow and Green's [12] modification of Vie-
land’s [13] theory and their liquid free energy. As
can be seen. the agreement with expeniment 1s
excellent for GalnP, but that with GalnAs 1
poorer. To demonstrate the sensitivity of these
curves to aspects of the theory, figs. 2b and 3b
show the distribution coefficients (the rauo of the
solidus to liquidus concentration at a given tem-
perature) plotted against the resulung solid con-
centration for the correlated model and for an
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ideal random allov using the same enthalpy
parameters. As can be seen. a regular-solution
random model differs substantially from the corre-
lated-alloy case.

4. Vacancies

Vacancy formation energies have been calcu-
lated for semiconductors and their alloys that take
explicit account of the final state to which the
removed atom goes as well as bond-lengths relaxa-
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uon, charge redistribution, and danghng-hybnd
mteraction modifications to the latuce surround-
ing the vacated site [14.15]. The model is based on
a ught-binding Hamultonian [16] with umiversal
scaling that vields correct cohesive energies. The
extractton energies £ () where the final state 1y
an atom at infinny. vacancy energies £ (111) and
E (100). where the atom final state 1s a (111) or
(100) surface site. and sublimation energies E (111}
from a (111) surface are in table 1. Notce that
E_(111)1s not much different for the anions and
cations of a given compound. To reach the ap-
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Fig. 3. In; . ,Ga, Ay (a) solidus and liquidus phase diagrams:

(b) distnbution coefficient x¢sohid), x(liquid) as a function of

x. Heavy curve. full cluster theory: hght cunve. 1deal regular
solution model.
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Table 1

Correlauons and alloy properties

()

Vacancy formauon energies for removal of an atom from bulk to mfimity. £ (). to a tnpy bonding site on a (111) surface.
E_{(111). and to a doubly bonding site on a (100) surface, E,(100). and the subhimation energy from a tnply bonding site on the (111)

surface. £ (111): all energies are in eV

Element E (x) E (111) E (111 E (100

or compound Cauon Anion Cauon Anion Cauon Anion Cation Anion
Carbon 19.25 19.25 5.93 5.93 13.32 1332 11.89 11.89
Silicon 10.32 10.32 282 2.82 7.50 7.30 5.68 5.68
Germanium 811 8.11 2.10 2.10 6.01 6.01 4.23 423
Tin 6.30 6.30 1.59 1.59 4.71 47 3.18 318
AlP 10.65 11.12 3.58 411 7.10 7.01 6.62 6.62
GaP 8.30 8.76 2.62 2.83 5.68 593 5.92 4.02
InP 323 8.83 2.60 3.52 5.63 531 5.40 4.70
AlAs 8.79 9.65 4.74 5.10 405 455 485 6.03
GaAs 6.66 7.81 366 3.76 3.00 4.08 420 3.75
InAs 6.78 7.48 3.56 4.14 322 334 194 412
AlSb 4.7) 6.06 n 2.73 1.98 3.33 2.67 329
GaSh 5.95 6.82 319 313 2.76 3.69 432 2.53
InSb 597 6.28 310 3.16 2.87 kB! 3.96 2.69
ZnS 6.90 9.99 4 4.1y 2.69 5.80 5.00 5.53
Cds 6.09 8.78 in 372 23 506 4.17 5.02
HgS 453 7.78 3.08 3.08 1.45 4.70 4.35 388
ZnSe 5.66 8.66 3.57 3.55 2.09 51 4,18 4.98
CdSe 5.03 7.76 3.20 3.20 1.83 4.56 3.35 4.60
HgSe 3.39 6.77 2.49 2.52 0.90 428 3.37 3.39
ZnTe S10 8.08 2.09 2.11 3.01 5.97 423 4.15
CdTe 4.68 7.36 1.90 2.05 2.78 5.3 3.65 399
HgTe 310 6.36 1.50 1.51 1.60 485 3.57 2.61

M E_(700) 15 an esumate only and does not include hack-bond relaxauon at the surface.

propriate (111) surface. an atom breaks four bonds
in the bulk and remakes three bonds on the surface.
The differences between anions and cations anse
from differences they cause on back-bonding states
adjacent to the vacant site. The sublimation en-
ergies are another matter, since the promotion
energies are quite different for anions and cations.

Following the systematic variations of extrac-
tion energies is a convenient way to examine trends
in the alloys. The variations of E (o0) for differ-
ent clusters are shown for the common arsenic
and common gallium alloys, respectively. in figs. 4
and 5. for . =0.5. The vanation of the numbers
with x is fairly small. There are a several note-
worthy features to these curves that will signifi-
cantly affect diffusion, doping, and other device
processing steps. First, as would be expected, van-

24

ation with cluster type is more promunent for the
unalloved atom type. which is affected by the
occupation of the four near-neighbor sites; the
alloyed atom character depends on the occupancy
of the twelve second-neighbor sites. The vaniations
all tend to bow down, some by large amounts.
This means that vacancy concentrations in alloys
will differ greatly from those that would be calcu-
lated from an average activation energy.

The hop process will also be affected. For
example, in GaP,_ As_. it will cost more energy
for a Ga on a PAs, cluster to hop to either a
P,As, or an As, cluster than to hop to another
PAs, cluster. Thus, for high x (the arsenic-rich
side) where the PAs, cluster population x, is
large, we mught expect diffusion profiles character-
istic of parallel paths with different activation




34 A. Sher et al 7 Correlanions und allov properues
n:Aly_,Ga,As n:Ga,_,In As niing_, Al As
0 1 2 3 1 2 3 1 2 3 4
10 ‘ —L ,
4
9 J ;
I | | ot
g 2 \\ i : . . .
7 2 Az /
: { A3
> jM
@ -
B
.
-
5 ~ :
:
s = ;
= i
3 5 i
- ; ;
- | *;
2 T T T 1 T 1 T l H ) i T T 1 T T
0 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 12
n:Aly5_,Ga,As n:Ga;,_,In, As n:ing,_ Al As
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x =0.5.

energies. This will occur if X, exceeds the percola-
tion threshold [17]. Clearly these extraction energy
curves also suggest that nomsoelectronic impurity
substitution energies will vary for the different
clusters. Moreover, ion milling and reactive ion
etching may be quite different. For example, it has
been observed [18] that in the presence of a gal-
lium ion beam. InAs etches an order of magnitude
more rapidly in a chlorine gas environment. This
might be anticipated from fig. 3, since the indium
extraction energy from a Galn,, cluster is smaller
than that from an In,, cluster. It remains to be
demonstrated that this effect, rather than some
damage mechanism, is responsible for the in-
creased etch rate. Many other effects are implied
by figs. 4 and 5 as well as similar results for all the
other III-V and II-VI alloys. These kinds of

considerations obviously will play a role in anyv
device processing design rules applied to alloys.

5. Surface segregation

It is well established in metal alloys that dif-
ferences between the vacancy formation energies
of the constituents drive concentration variations
near the surface [19]. but this effect has not been
treated previously in semiconductor alloys. We
have begun this theory by treating the solid as a
succession of layers parallel to the surface [19].
The interaction energies of atoms within a layer
and between layers are all included in the average
enthalpy. The configuration entropy of each layer
is calculated from the approprnate version of eq.
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(10) for pair interactions and for each layer 1, x is
replaced by the layer concentration x,. The con-
centration of each layer is then set by the condi-
tion that the chemical potential be constant.

We find several startling results. If the solid has
equilibrated at a temperature 7> T, the critical
temperature for spinodal decomposition, then the
surface concentration returns to the bulk value in
a few atomic layers However, if the equilibration
temperature is below 7. then the range of the
segregation profile is much longer and the con-
centration will oscillate with a period and ampli-
tude that depend on the equilibration temperature
and the average composition. The oscillations can
have a large modulation index and periods of 4
and 20 lattice spacings have been found. This is a
superlattice phase that is stabilized by surface
segregation and an order-disorder transition. We
are currently examining the influence of a
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boundary condition corresponding to an epitaxial
laver on a substrate.

It 1s too early in our calculations to determine
whether surface segregation is responsible for any
of the long-range order observed in several alloys.
However. the effect is strong, being driven by the
same mechanisms responsible for high-tempera-
ture order-disorder transitions, and requires rela-
tively little diffusion to establish the relevant con-
centration patterns, so we anticipate that it will
result in observable phenomena.

6. Concluding remarks

There are two separate aspects to the correla-
tion state of an alloy. The first is specified by the
population distribution of the different types of
clusters, taking the alloy to be spatially homoge-
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neous. The second is the way the alloy separates
below the critical order-disorder transition tem-
perature into a spatially inhomogeneous arrange-
ment. The cluster population distnibutions are
driven only by small subtle aspects of the lattice-
mismatch-induced strain and chemical terms, the
reduced excess energies,while the mixing enthalpy
parameter that determines the order-disorder
transition temperature depends on the total strain
and chemical contributions to the cluster excess
energies. Because onlv the small reduced excess
energies {4} enter into the populations { X, }, the
theory may have to take account of small effects
not previously thought to be significant if accurate
predicuons are to be made.

Vacancy formation energies are sensitive to the
loczl surroundings from which an atom s
extracted. as well as the final state of the atom,
e.g.. the particular surface onentation and 1ts local
arrangement. From the svstematic variation of the
extraction energies alone. it 1s evident that multi-
ple acuvation energy. and parallel path diffusion
should be expected in alloys. Moreover, noniso-
electronic impurities are likelv to have preferred
cluster sites as well. although we have done no
explicit calculations of dopant site preferences.

The vacancy formation energy differences be-
tween alloy-substituted atoms were also shown to
drive surface segregation. For examples whose ef-
fective equilibration temperature 1s above the criti-
cal order-disorder transition temperature. the
surface will be rich in whichever component pre-
fers to go to the surface and the composition
returns to the bulk value in a few fattice spacings.
However, for samples equilibrated below the criti-
cal temperature, our preliminary results tndicate
that compositional oscillations may occur, produc-
ing a superlattice. Details remain to be established
for various materials systems. This arrangement
corresponds to a new type of metastable phase
that 1s driven by a surface boundary condition.
The free energy of this phase lies between that of
a homogeneous alloy and its spinodal decomposed
arrangement. Whether or not this new phase cor-
responds to any of the correlated arrangements
(20.21] that have been observed in alloys grown at
low temperature remains to be established.
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A Green's-function method has been used to study the surface and interface electronic structures
of the I1-VI compounds HgTe and CdTe. Localized surface and resonance states near the cation-
terminated 1100: surface of CdTe and the anion-terminated surface of HgTe have been found for the
ideal surfaces. The energies and strengtits of these surface states are altered by surface perturba-
tions. The bulk states near the surface are drastically modified by the creation of the surface. but
the band gaps remain unchanged. Numerical evaluation of the local densities of states at the I and
J pounts shows that, at the (1001 interface of HgTe/CdTe, the previously observed surface states are
no ionger present. However, in the interface region, bulk states of one matenal penetrate some dis-

tance into the other material.

I. INTRODUCTION

One of the earliest formulations used 1n the investiga-
tion of surfaces and interfaces was based on the linear
combination of atomic orbitals (LCAO) method.
Goodwin' first applied the LCAO model to study the ex-
istence conditions for localized Tamm? states in a crystal.
He found that these states occur when the diagonal
Coulomb integrals and the off-diagonal resonance in-
tegrals of the surface are allowed to be different from
those of the bulk, for systems of single-level or of sp-
hybridized atoms. At the same time, Shockley® investi-
gated a periodic potential that is terminated at its max-
imum and found that, under the condition that the bulk
bands crossed, surface states exist in the middle of the
band gap. Shockley states. as they have come to be
known, come into being when the perturbations at the
surface are small in comparison to the widths of the al-
lowed energy bands. Koutecky® and others® generalized
Goodwin's model to study the energy and existence con-
ditions of surface states. Electronic interface states were
studied within the LCAO method by Davison and
Cheng.® An exact tight-binding solution for the surface
and interface problems of a one-dimensional “emiconduc-
tor was obtained by Dy and co-workers.”?

Since these early investigations, many other papers
have appeared in the literature for the study of surface
and interface properties of solids. Kalkstein and Soven
(KS! (Ref. 9) introduced a Green’'s-function (GF) formal-
ism to siudy the surface electronic properties of semi-
infinite crystals. This is a relatively simple but powerful
method by which both the bulk and surface properties of
a semi-infinite crystal can be studied. The method can be
generalized in a straightforward manner to study the
electronic properties of an interface formed by joining
two semi-infinite crystals. Because of its simplicity and
power the method of KS was widely applied in many cal-
culations during the decade following its develop-
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ment.'®™"* For the same reasons we apply this method in
this work to investigate surface and interface electronic
structures of the pure 1I-V1 compounds CdTe and
HgTe_lf‘lo

Despite the intense interest in Hg,_,Cd, Te over the
past three decades due to its application in the prepara-
tion of infrared detectors, there have been r:latively few
experimental and theoretical investigations of the surface
and interface properties of this system.'” ™' Since the
KS method 15 well suited for the study of the surface
properties of a system described by a tight-binding Ham-
iltonian, we use here a Hamiltonian closely related to that
obtained by Hass, Ehrenreich, and Velicky (HEV) (Ref.
20) for HgTe and CdTe in the empirical tight-binding ap-
proximation (ETBA) based on the LCAO interpolation
scheme of Slater and Koster.?! In the ETBA the predict-
ed band structures of the pure compounds HgTe and
CdTe are matched to experimentally determined band en-
ergies.*”

In Sec. I, we introduce the formalism of KS for the
description of the surface properties of I1-VI materials
along with the extension of the technique to the problem
of interfaces of these materials. Section III contains the
results of our calculation and a discussion.

II. FORMALISM

In the formalism of Kalkstein and Soven,’ a pair of
semi-infinite crystals is formed by introducing a cleavage
plane into an infinite crystal in one crystallographic
direction. A GF describing the electronic properties of
the semi-infinite systems is derived from the GF of the
infinite crystal and a scattering potential representing the
cleavage. When combined with a tight-binding formal-
ism in which nearest- and next-nearest-neighbor interac-
tions are included, the scattering potential is relatively
easy to calculate making application to realistic systems
simple. The Hamiltonian is constructed, following HEV,

7825 © 1989 The American Physical Society
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for HeTe and CdTe using sp’ basis states and including
spin.*" ' The parameters used are those of Slater and
Koster'' as determined by HEV (Ref. 20 except that, in
our case, the values of Esx 110 and EsxiOlli are inter-
changed. This produces band structures'®'® that are
qualitatively similar to those of Bryant which offer im-
proved conduction-band mass.'®> We calculate the GF, G
assoctated with this Hamiltonman by using the defining
equation

G=E~ir—Hy", th

where A 15 the Hamiltonian of the infinite unperturbed
system. It 1s understood that G s to be calculated in the
limit as the positive imaginary part A approaches zero.
These calculations are performed in k space, utilizing ful-
Iy the periodicity of the crystal.

For the surface tnterface) calculations, since we no
longer have translational periodicity along the direction
perpendicular 1o the surface (interface), we cannot use an
ordinary k-space representation. Kalkstein and Soven®
assume periodic structure parallel to the surface and use
a representation consisting of states which are localized
on planes of atomic sites parallel to the surface and
represented by the index n, and of Bloch states reflecting
the penodic symmetry within the planes which are
represented by the index k . This :5 the mixed or Bloch-
Wannier representation. We assume the same type of
symmetry in the interface system. The Hamiltonian and
the GF of the bulk crystal as well as the Hamiitonians of
the semi-infinite and interface systems must all be ex-
pressed 1n this mixed representation. The formulas for
the semi-infinite svstem were derived by KS and are the
same for us if we reinterpret the algebraic expressions as
matrix equations for the sp -spin basis states. Note that
in this paper we examine the surfaces and interfaces per-
pendicular to the [100] direction for pure CdTe and
HgTe samples. For these compounds. this structure cor-
responds to an arrangement in which the anions and cat-
ions are placed 1n alternating planes parallel to the sur-
face or interface. For notational simplicity, in the follow-
ing, a cation-anion pair of planes is given a single layer
index n, with the species index v left to distinguish be-
tween the two species (layers).!*1®

For basis states of the infinite system, KS used states
analogous to aovk), where a=s,x,p.z indicates the
atomic orbital, the spin (1, 1) is represented by 0, v=a or
¢ stands for anions or cations, respectively, and k is the
wave vector. Following KS, we write the Bloch-Wannier
states for our system as

~kR
aocvnk )= —\]— Se “laovk) , (2)
Yok

where R, is the position of the ion sublattice represented
by v on the planc labeled by n, and k and k_ are the com-
ponents of k. parallel and perpendicular to the surface
linterface) plane, respectively. This basis set reflects the
symmetry of the semi-infinite system and 1s therefore well
suited for our purpose. In the following we suppress the
k index for compactness of notation, as tn
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Gnni=3 ¥ (aovnk G a'o'vin'k)

aocy a g
X aogvnk Ya'ovin'k 13

which ts the GF submatrix between laver n and layer n'.
From the site-diagonal GF, Gin,n1, we may calculate
the local density of states

ptE=—1/mImTr Ginyni C)

where Tr, indicates that the trace v to be carned out
only for the species ‘layer! given by v.

The GF of the semianfinite crysial, G' 1s found
through the application of the Dyson equation,
G =G +GVG' . {s

Besides calculating the matrix elements of the infini
crystal GF, G, we must also find the matrix elements of
the scattering potential, V', introduced by the creation of
the surface. We label the double lavers in the crystal
with integers such that the cleavage plane passes between
the double layers —1 and 0. and the semi-infinite crysial
of interest starts at the zeroth laver and has laver indices
n 20. Because G'tn,n"}is zero for all n and n’ lass than
zero, the only matnix elements of the scaitering potential
that enter into Eq. (5) in the present mode! are V't~ 1,00
and V(0, — 1) which express the severing of the interac-
tions across the cleavage plane. We may also include a
diagonal term $7¢0,0), if we wish, to allow for surface
perturbations such as relaxation and environmental
shifts, into our calculation. These scattering potentials
have explicit dependence on k and the pair of indices as-
sociated with ¥ refer to the double lavers involved in the
interaction. In terms of the Hamiltoman matrices, the
scattering potential matrix 1s given by

V'=H—-H , (6

where H' 1s the Hamiltonian of the semi-infimite crystal.
The scattering potential matrix elements describing the
breaking of interactions across the cleavage plane are®

Vo, —-h=—-H10,—-1,
Vi—1,0=—H(—-1,0),

(T

where, as before, the k index has been suppressed for
compactness of notation. The matrix element $10.0V s
introduced parametrically to account for the shifts in the
atomic levels and hopping interaction at the surface lay-
er.

Explicitly. a general matrix of G is found from Eq. (5)
as

G'inn')=Ginn")
~{G(n.01¥1(0,0}
+Gin, =1 =1.0])G"10.n"Y, 18
with n and n” 2 0. To solve this equation, it 1s first neces-

sary to solve for G'10.n"1 which is done by setting n equal
to zero in Eq. 18) and solving for the matrix element




-

G10.n1=[1-G10.011 0.0
—-G10,— 1 ¥Vi—1,00]7'Gion" . i9)

To find the general matrix element of G* we need only to
substitute Eq. 191 into Eq. (8). To include environmental
effects on the surface atoms, we introduce a parameter 8
which measures a shift of the surface layer on-site ener-
gies. Also, we introduce a parameter d which represents
the strength of the interactions between the first two
planes of atoms in the semi-infinite crystal relative to the
same interactions in the bulk. The parameters & and d
are included in the matrices ¥'(0,0) and V(—1,—1).'%!®
This model was first extended to the interface between
two model semi-infinite one-band crystals by Yaniv.'
We further extend the technique to real crystals using the
sp® with spin basis states. The interface is formed be-
tween crystal 4 (n £ —1) and crystal B (n 20). In joining
the crystals, the interactions between the Te and Cd
planes, as well as those between the Te planes, across the
interface, are taken to be the same as in the bulk. Since
there are no data available for the hopping integrals be-
tween Hg and Cd planes we assume them to be equal to
the average of the interactions between bulk-crystal (100)
Cd planes in CdTe and interactions between bulk-crystal
(100) Hg planes in HgTe. The interactions between the
A and B sides of the interface are included in the scatter-
ing potentials 110, —1) and V'(—1,0). To our Green’s
function we add subscripts a and 8 which take on the
. values A4 and B to indicate the side of the interface in-
volved in the calculations. Once again solving the Dyson
equation for the interface GF, g (Ref. 16),

. g=G'+G'V'g
we find the interface GF matrix elements as
8apimn)=G im.n)b,y
"Gg(m,O)V’(O. —1ig 50— 1,54

+Gim, —DV'(—1,0)gg40,n)5, , » (10)
where
844~ Lm=[1-G, (=1, —-1)V(—1,0)G5(0,0)
XV(0,-D]"'G(~1,n), (11a)
8550, n)=[1-Gx0,0)V(0,— )G, (—1,—1)
XV(—=1,0)]""'Gy(0,n), (11b)
€5.410.m)=G4z(0,0)V(0,—1)g,,(—1n}, (11c)
gasl—1.m=G (=1, —1NV(—1,0)gg5(0,n), a1d
- and 8,4 is the Kronecker delta. We have assumed a per-

fect match in the lattice spacing across the interface
which is nearly true for HgTe and CdTe with a difference
in spacing of only 0.3%.

In the evaluation of the GF of the bulk system a great
deal of numerical integration is required. The integrals
are evaluated through the use of a Lagrange interpolation
scheme in which the time to calculate the band structures
is reduced by evaluating them exactly at only a few points
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in k space and interpolating for the intermediate values. -
Accuracy is ensured through sampling the functions at a
sufficient number of points. All calculations are per-
formed with a smal! positive imaginary component in the
energy and the final results at the real energy axis are
evaluated through the use of the analytic continuation
procedure of Hass, Velicky, and Ehrenreich.**

One quite useful feature of our calculation 1s that the
evaluation of the GF's of the semi-infinite ¢rystal and the
interface requires much less computational effort than the
evaluation of the infinite crystal GF.'® As 2 result of this
speed, we are able 1o consider several . ..des of the envi-
ronmental shift and surface-nearest-neighbor interac-
tion. In order to observe the effects of the variation of
these parameters on the localized states we examine the
local densities of states (LDOS) at various values of the
parameters for a few CdTe and HgTe surfaces and inter-
faces. These LDOS are evaluated at fixed values of k so
that we may find the positions of the localized state bands
in the surface Brillouin zone. For details of the evalua-
tion of the matrix elements of the infinite crystal GF and
those of the scattering potentials required for our calcula-
tion, one 1s referred to Refs. 15 and 16.
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III. RESULTS AND DISCUSSION

Once the matrix elements of the infinite crystal GF and
the relevant scattering potentials are specified, one can
calculate the matrix elements of the GF of the semi-
infinite sample and that of the sample with the interface
using Egs. (8) and (10), respectively. One can further cal-
culate the LDOS at various layers using an equation of
the type of Eq. {4). In this paper we present the LDOS
calculated at the symmetry points I and J and at ener-
gies near the valence- and the conduction-band edges of
the sample where the principal band gaps occur.

In Figs. 1 and 2 we plot the surface LDOS at the '
point for various combinations of the environmental shift
parameter & and the geometric shift parameter (relaxa-
tion parameter) d for CdTe cation-terminated and HgTe
anion-terminated crystals, respectively. We begin by not-
ing, in Fig. 1, the existence of a localized surface state
(bound state} which is the sharp structure that appears in
the LDOS within the band gap of the CdTe, whether or
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FIG. 2. Dependence of the LDOS on the parameters § and d
as compared to the infinite crostal for ia) the anion surface layer
and (b} the first interior cat.on layver at T (k =0 for HgTe
cation-terminated (100} surface.
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not there is a surface perturbation. The ideal cation-
truncated (100) surface of CdTe has a surface state at [
with energy lying at E =0.6 ¢V above the top of the
valence band. We also see that the bulk densities of
states are modified as a result of the introduction of a sur-
face but the band gap of CdTe remains unchanged. We
note that the position of the bound state is sensitive Lo
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FIG. 3. Dependence of the LDOS on the parameters 6 and d
as compared to the infinite crystal for (a) the amon surface layer
and (b} the first interior cation layer at J [k =7/al viv2)for
HgTe anion-terminated (100 surface.
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variations 1n both d and &. In Fig. 2, we nouce that the
surface has again introduced a marked change in the
LDOS of HgTe. A resonance state appears in the form of
a spike winside the conduction band of semimetal HgTe.
The contribution of this resonance to the LDOS is
strongest for anion layers indicating that anion states are
the most likely constituents of this state. Similar surface
states have been calculated by Bryant'® for the special
case where no surface perturbations exist.

The surface states calculated for the HgTe at the J
point where there exists a gap are shown in Fig. 3. These
states exhibit the same dependence on the interactions
that was seen at the I' point. Here instead of a single
peak we see a pair of bound states just above the valence
band within the band gap. Also above the conduction
band there 1s a bound state that was not observed for the
T point. Anions contribute more strongly to the bound
states inside the band gap while the cation contribution is
stronger to the bound state above the conduction band.
Also notice that the bulk states are strongly modified by
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the introduction of the surface and that the band gap» are
not altered by the surface.

Our calculation of the layer dependence of the surface
states shows that these states become progressively less
significant as we examine deeper inside the crystal indi-
cating these states are indeea localized bound states. The
bulk LDOS 1n the deeper layers, on the other hand. start
resembling the infimite crystal LDOS.

As mentioned before. the interface calculations have
been performed assuming no lattice mismatch in the crys-
tal structures of the HgTe and CdTe compounds, thus
neglecting all strains that may be present at the nterface.
The parameters chosen for our calculation also do not al-
low for valence-band offset. With these assumptions.
dramatic effects are seen at the interface of HgTe and
CdTe as shown in Figs. 4 and S, where the LDOS in the
CdTe side of the interface are presented at ' and J
points, respectively. The most obvious effect 1s the lack
of localized states that were previously seen at the free
surfaces of these materials. Instead, we find that. close to
the interface. the bulk states of HgTe that lie in the re-
gion between 0 and 1.6 eV appear in the band gap of
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FIG. 5. Comparison of the surface LDOS of the cauon-
terminated (100} surface of CdTe with the LDOS plotted fa) at
first cation layer at the interface and (b) the first interior anion
layer for the CdTe side of the (100} interface CdTe/HgTe at J
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CdTe at the I’ point. These states in the CdTe gap be-
come less significant at layers further from the interface
while at the same time the LDOS in the energy ranges of
the conduction and valence bands of CdTe increase in
strength. Thus we have a narrowing of the gap of CdTe
in a limited region near the interface which allows con-
duction electrons to penetrate into the CdTe from the
HgTe over a short distance. In Fig. 5, we explicitly see
how the gap at the CdTe lavers is reduced with respect to
pure CdTe at J. Calculation of the LDOS in the HgTe
side of the interface shows similar effects.

The above results describe how the LDOS change from
the bulk to the surface and then from the surface to the
interface. While the bulk and the interface results can be
considered realistic, the surface results may not be, since
the surface reconstruction has not been included in the
calculation. Recent experiments' *®~*® and a structural
theory"® indicate that the surfaces of CdTe and some oth-
er 1I-V1 compounds undergo reconstructions similar to
those on the surfaces of 1II-V compounds. However,
similar measurements are yet to be made on HgTe sur-
faces and CdTe/HgTe interfaces. Our calculatons indi-
cate that changes in the electronic structure in the form
of environmental shifts at the surface lead to only minor
changes in the localized surface and the bulk LDOS.
Whether a surface reconstruction will result in substan-
tial modification of these states is yet to be determined.

In conclusion, we have described in this paper how one
can incorporate the GF method of KS to calculate the
surface and interface structures of II-VI compounds

J. T. SCHICK, S. M. BCSE, AND A_-B. CHEN
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without having to deal with the aruficial super-cell ap-
proximation. Our calculation shows that drastic changes
in the LDOS can occur because of creauion of surfaces
and interfaces. Localized surface or resonance states ap-
pear above the top of the valence band, and the effects of
the surface on the LDOS persist at several layers inside
the bulk. At the interface, there are no localized states
but the bulklike states related to one material penetrate
into several lavers inside the other material resulting in
narrowing of band gaps close to the interface for the wide
band-gap material. At present there are no systemati
experimental data available for comparison with our con-
clusions.

Finally, even though we have not included all aspects
necessary for a complete description of the surfaces and
interfaces, our work can be considered to be the first step
toward the understanding of the surface and interface
electronic structures of the II-Vi >mpounds. To our
knowledge, the results presentec " - ¢ are new for the in-
terface and more general than any previous surface calcu-
lations on the II-VI compounds. Since the method 1s
flexible, it will be possible to incorporate realistic
structural models dealing with the surface reconstruc-
tions, when they become available, to calculate more real-
1stic electronic properties of such surfaces and interfaces.
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Alloys of the form A4, B,_, C almost always have a different surface concentration from the bulk
in order to maintain a constant chemical potential for each layer in the alloy. We have calculated
the degree of surface segregation for the pseudobinary alloys Hg, .,Cd, Te and Hg, ., Zn, Te. The
enthalpy responsible for segregation is the difference in the energies for moving an 4 or B atom
from the bulk alloy to the surface. There are two major contributions to this energy process: (1) a
bond-breaking mechanism, whereby the element with the lowest surface energy segregates to the
top, and (2) strain release, where the dilute element in the compound segregates to the surface to al-
leviate the strain energy due to mismatch of the 4C and BC vond lengths. In our segregation mod-
el, the free energy of each layer is calculated in the regular and quasichemical approximations. By
equating the chemical potentials of each successive layer to the bulk, the composition of each layer
is obtained. Our results indicate that there is strong surface enrichment of Hg in Hg,_,Cd, Te
while there is less surface segregation of Hg in Hg, -, Zn, Te at the low x values appropriate for in-
frared application. Mercury segregation to the surface will lower the band gap or may turn the sur-

15 MARCH 198%-11

face into a semimetal, thereby affecting the passivation of the surface.

1. INTRODUCTION

Applying such probe techniques as Auger electron
spectroscopy (AES), low-energy electron diffraction
(LEED), and ion-scattering spectroscopy (ISS) allows one
to determine the chemical compositions of surfaces with
great accuracy. These measurements' have shown that
the chemical composition of the surface is different from
the bulk composition in most metal alloys. This
phenomenon of surface segregation has also been studied
theoretically in great detail starting with the work of
Gibbs,? who noted that the surface composition will be
enriched with the alloy component that minimizes the
free energy associated with the creation of the surface
(i.e., bond breaking at the surface). From Gibbs's adsorp-
tion equation for a two component system (A4 B, )it
has been shown® that the surface concentration of A4
atoms (xg) differs from that of the bulk (x,) by the rela-
tion

Xs Xp

exp[{yg—v 4o /kT], (n
I—XS

I—x,
where y 4, 5. is the surface tension of pure A(B)and o is
the average area per atom.

Application of Eq. (1) to real systems does not provide
good quantitative results since it does not consider any
deviations from the bulk concentration for layers beneath
the surface. Multilayer models which include layer com-
positions under the surface were formulated by Williams
and Nason* among others® by employing a regular soiu-
tion method. Later work by Kumar er al.®’ extended
the surface segregation problem to take into account non-
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random distribution of atoms in the alloy using the quasi-
chemical approximation (QCA).® Moran-Lopez and Fal-
icov’ have also looked at the segregation problem along
with surface order and/or disorder transitions using
Kikuchi's method. '°

The primary driving force for surface segregation for
an alloy 4,B,_, can be thought of as the difference in
energy on moving an A4 or B atom to the surface. As not-
ed above, one contribution is the bond-breaking mecha-
nism, whereby the element with the lowest surface free
energy segregates to the top. Experiments' have shown
that this is not the only mechanism that causes one
species to prefer to be on the surface. In dilute alloys
where there is a size difference in the component species,
the dilute element in the compound will segregate to the
top to alleviate the strain energy due to lattice mismatch.
An example of this is seen in CuAu, where in the dilute
Au alloy case, Au is predominantly on the surface.'
Looking only at the bond-breaking mechanism, however,
Cu is predicted to be the segregating element since it has
the lower surface tension. It can be explained by the
strain release argument since the Au atom is approxi-
mately 15% larger than the Cu atom. The connection
between strain release and surface segregation was first
pointed out by McLean!! in his study on grain boun-
daries. Incorporation of both strain energy and bond
breaking in surface segregation studies has been done by
Wynblatt and Ku. '*"}

In the theoretical and experimental work done so far,
the materials studied have primarily been transition and
noble metals. The effect of surface segregation on metals
has important implications when dealing with catalysis,
corroston, and grain boundaries. In this paper, however.
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we will look at the effects of surface segregation on semi-
conductor alloys. In particular, we are interested in the
H-VI systems Hg, Cd,Te and Hg, ,Zn Te. The
suttability of these matenals for infrared detectors s
determined to a large extent by the control of the surface
«omposttion and the capability for passivation. Because
of the structural weakness of Hg, Cd, Te, it has been
suggested that Hg, . Zn, Te may be better suited for in-
frared detectors. We are interested in how the structural
and electronic properties are modified by the presence of
surfaces and interfaces. In regards to surface segregation,
we are interested in examining the extent of Hg migration
10 the crystal surface.

In the first part of this paper we will discuss models
that describe the thermodynamics and amount of surface
segregation that cccur in pseudobinary binary alloys of
the form A,B,_ ,C. These models are modifications of
the regular solution by Williams and Nason® and the
QCA theory by Kumar®’ to include first- and second-
nearest neighbors in zinc-blende structures. We note that
the shortest range of interaction that can effect the atom-
ic distribution in a buik pseudobinary semiconductor al-
loy is the second-neighbor interaction (e.g., 4-4, A4-B,
and B -B), because this is the closest distance between the
alloying atoms, Thus, in the QCA, the second-neighbor
model for a pseudobinary alloy is equivalent to a first-
neighbor model for the usual metal binary alloys. While
the first-neighbor interactions ( 4-C and B-C) in a pseu-
dobinary alloy have no effect on the bulk statistics, their
contributions are required for the study of surface segre-
gation. These first-neighbor terms will become part of
the “bond-breaking™ energies which may become the
dominant factor for surface segregation of an alloy com-
ponent. Our formalism will also incorporate the release
of the strain energy when an atom positions itself on the
surface. Section III presents numerical results for the
layer compositions of the [1-VI alloys Hg,_,Zn, Te and
Hg,_,Cd,Te. We will adopt the experimental and
theoretical mixing enthalpies quoted in Ref. i4 for the
second-neighbor energy parameters. The energies re-
quired to move a cation from the alloy bulk and place it
on the surface, calculated for these alloys in Ref. 15, will
be used as the bond-breaking energies. All temperatures
considered will be above the critical temperature for
phase separation. In addition, we will only consider sub-
stitutional segregation. in Sec. IV we will discuss the re-
sults and give ideas for further work on this topic.

I1. THEORY

Consider a zinc-blende alloy of the type A B,_,C,
where the A and B atoms occupy one fcc lattice while the
C atoms occupy the other fcc lattice. In this
configuration, an A (or B) atom is surrounded by four C
nearest-neighbor atoms and a total of 12 second-nearest
neighbor 4 and B atoms. Assuming the alloy is semi-
infinite, divide the alloy into layers parallel to the surface,
where each layer i has a fractional concentration of A
atoms, x, (i =1 being the surface layer). The layers con-
sidered here refer to layers which contain the alloying
atoms (4 and B). Note that for the zinc-blende struc-

ture. 2 laver of C atoms is alwavs between adjacent alloy
atom layvers. Neglect any gas vapor effects by assuming a
vacuum mterface with the surface.

To determine the composition distribution at thermal
equihibrium the total free energy of the system Fi1s mini-
mized with respect to the layer concentrations jx ; with
the constraint that the total number of A4 atoms s a con-
stant:

3 x, =const . {2

For layers deep inside the alloy. any effects of the surface
are negligible and the concentration is that of the bulk.
x,. Through the use of Lagrange multipliers. the condi-
tions stated above can be written as

oF _ oF

—— =T (3)
ox,  9x,

for all x,. This is equivalent to saying that the chemical
potentials of each layer, defined as u, =3dF /dx,, must be
equal to each other:

plx )=plx,) . 4

We will write the total free energy per number of atoms
in a plane for the layers system as a sum of layer contri-
butions:

F=3U-T3S, . (5

where U, is the configurational enthalpy and S, 1s the
configurational entropy of the ith layer. As will be seen
later, U, and S, actually depend on contributions from
neighboring layers.

In the regular or QCA treatments, the interactions in
the enthalpy term arise from pair interactions only, the
interactions in our case being A4-C and B-C for the
nearest neighbor and A4-A4, A4-B, and B-B for the second
nearest neighbor. These bond enthalpies are written as
€, and g, for the i-j pair interactions at the surface and
below the surface, respectively. As we shall see later, the
distinction between surface and nonsurface bond enthal-
pies is done 1n order 10 consider the effects of strain
release.

In a given layer, an A4 or B atom is surrounded by

z'"'=2,"+25"'+2;",
(6)
Z'"'=2Z,"+2Zy" (surface) ,

nearest-neighbor C atoms. In (6), Z;'' is the number of
nearest neighbors on the same layer and Z}'' and Z;'' are
the number of nearest neighbors on the top and bottom.
layers, respectively. Similarly, for the second neighbor
A-A, A-B, and B-B interactions, the number of second-
nearest neighbors at and below the surface will be ex-

pressed as

Z=2,+2Z;+2Z;,
)]
Z=2Z,+Zy (surface).
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Regular solution. 1n the context of the regular solution, the distribution of atoms in a given layer 1s assumed to be
random and the entropy term per layer is simply the form for random distribution of aioms on a given layer

S, =—k[xInx, +(1—x)In(1—x,)]. (8)
Tne enthalpy for the first layer is given by
i)

z R .
U,=Z‘L"[x,£“c+(l—xl)e‘,c]+—§——[x,s“+(l—xl)EBC]+TL[x]e‘“+2xl(l—x.)c’w+(l-—xlO‘s’”].
+—i‘1[x,xze“+x|(1—x2)e,,+xzu-x,)e_,,+(1—xl)u—xz)e,,], (9)
r
while for all other layers the enthalpy is €=€,5— €, FeEgp) . (s

=g 2z
U= 2"+ =5 |(xeac + (= x eac )
1=~ y
+ 3 lT[x‘xIEM-#xj(l—x,)e“
J=0-
+x,(l—xl)£43
+(1—x,N1—x, Jeggl . (10
where
ZT' ]=l°—l
Z,=.2Z,, j=i an
Zy, j=i+1

and the ; terms are there to prevent double counting.
For those layers in the bulk, the free energy, F,, is ob-
tained from Egs. (10) and (11) by setting x,,,=x,
=X, =xb '

ZlBll+2(Tl)

F,= 3

z"+ [xp€ 4c +(1—x,)ep5c]

. Z
+?[x§e“ +2x, (1= x, )€ 45 +(1—x,)egp]

+kT[x,Inx, +(1—x,)In(1—x,)] . (12)

Now that we have the total free energy of our semi-
infinite alloy we can use our condition for thermal equi-
librium [Eq. (3)] to relate the layer concentrations to the
bulk layers as

x, X,

AF8/kT
e

—x Tox ’ ¥

where the enthalpy of segregation AF™# is given by

AF¥=AE ,~AE;—2Z,e(1-2x,)

Z2+2Z, Z,+2Z,
+2¢ + x;—2Zx, |, (14a)
4 2
| Z,+2,
AF*8=2¢ lZ,_x, 5 (x, oy *+x,_)—2Zx,

(i==1). (14b)

In Eq. (14), the interaction parameter is defined as
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with €’ defined similarly. The first term in Eq. (14a) 1s
given by
(B3]

AE,= |Z}''+ —2’

- pilias Lo
Eac— L Euc 3 €44

t 2
with a similar term for AE,. Note that the first-neighbor
interactions only enter the surface term, AF8. Also note
that the terms | x, | before Eq. (13) are an arbitrary set of
layer concentrations while in Egs. (13) and (14) and here-
after {x;] are to be defined as the equilibrium layer con-
centrations.

In the ideal solution case (i.e., € =0) only the surface
layer is different from the bulk and the degree of surface
segregation is determined entirely by the term
AE ,—AE,. Comparing Egs. (1), (13), and (14a) we see
that AE , — AEj is related to the surface tension.

QCA solution. For a nonzero interaction parameter
[Eq. (15)], A- A and B-B bonds are favored when € is posi-
tive while A-B bonds are favored when ¢ is negative.
This contradicts the entropy term in the regular solution
[Eq. (8)], which was formulated with the assumption of a
random distribution of the atoms in the alloy. The QCA
formalism takes into account this nonrandomness via
short-range disorder parameters. In the standard QCA
for bulk alloys, only one short-range disorder parameter
is required. As pointed out by Kumar,® however, when
one is considering different layer concentrations the dis-
tinction must be made between intralayer and interlayer
short-range disorder.

For the QCA, the segregation equation becomes

X, Xp

€44

+ {16}

AF¥S /KT —AS™8/k
4 e , an
I-x, 1-x,
where AS*? is the entropy of segregation. Our QCA re-
sult for the enthalpy of segregation is basically the same
as that for Kumar’ except that only the lateral interac-
tions on the surface contain the ¢’ term

AF?"‘:AE" .’AEB_ZLE!(I—ZX| )al

Zab ZT+ZB

+2e (1-201-x,)8,)

—beah N (lsa)
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AFYE =2 " Za,~2,a,—2;+2Zy8 peamx[l—il-xra].
i b Loty
0 - Py =x[l—1-x .8 ].
1Z,+25 | .=
V’i 12 : x B rx By Pag =1 mx T xan,
O pap’ =il x - B
+Z, xa ~2 b {18b) . 200
L X,a, x,a, | 18b pip=x1~x a .
where a, and § are intralayer and interlayer short-range pls Txil—x . OB,
disorder parameters. These short-range disorder parame- .
ters give a measure of the degree of randomness in the al- Py =xtl—x a ,
loy. As a, —1 and B, — 1, the alloy becomes a random fe- ) y
pAB —xl'l(]"xi’Bl .

alloy and the enthalpy of segregation term reverts back to
Eq. (14). These parameters can be obtained from the
mass-action laws,*

" ’7”
N L Y (19)
kT PuaaPss
RSP RS!
€ Pap PBa _
?T—-rﬂ .7 =0, (19b)
Paa Psa

where pyy is the probability that an X atoms is on the ith
layer and a Y atom is in an adjacent position on the jth
layer. For the surface layer (i =1) ¢ is replaced by €’ in
{19). The probabilities are summarized below:

x x,
AS¥8/k = ZIn |~—— |- Z'In ~Zps o+
—Xx, I —x, 2
. Zr+2Zg pis! In Pz
2 Il I YT

where Z' is the total number of second-nearest neighbors
at layer 1 and h' g and g | are defined as

h'p=In pf‘ +a,(1-2x,)g", » (23)
PBs
1y I
P
g4 =In ____pr {A : (24)
Pl 4PHp |

As the short-range disorder parameters approach 1 and
the entropy of segregation term goes to zero.

II1. RESULTS

Numerical results are now presented for the (111) face
that terminates with the cation surface of Hg,_,Cd, Te
and Hg,_,Zn, Te for temperatures are the critical tem-
perature for phase separation. For the (111} face, the
second-nearest-neighbor  coordination numbers are
Z=12,Z,=6, and Z;=2Zz=3. Since accurate values
for the surface tension of a solid are difficult to obtain,
workers in metal alloys have related this term to the heat
of vaporization (AH**) via®

z,
vi0=—AH™. (25)

Note that addiuonal interlayer interaction shori-range
parameter ;. Since concentration varies with laver. two
interlayer short-range disorder parameters are required.
However, the §; is related to 8, from the constraint

regov ] LRI . IR ~
Niad =Ny =2 N (21

where N Yy is the number of X-Y pairs when X 1s on the
ith layer and Y is on the jth layer and N, 1s the number
of A atoms on the ith layer. See Refs. 6 and 7 for com-
plete details.

The entropy of segregation term 1s the same as that de-
rived in Ref. 7 and is given by

+B.(1_xl+|>823_51~1"x—18'45“ , 22)

f

As Wynblatt and Ku'?'* have pointed out, however, this
relation overestimates the surface energy. [For the (1001
fcc face, the overestimation is a factor of 2.] The empini-
cal relationship

y,0 =AH**?/6 (26

has given better numerical results for liquid metals.’ In
our study of semicon: ™ tor alloys, however, we have
used the vacancy formation energies, calculated by Berd-
ing et al.,' for AFE 4 3. This vacancy formation energy
1s defined as the energy required to take an atom from the
bulk and place it on a particular surface. These quanti-
ties have been calculated using Harrison's tight-binding
theory'® with corrections made for the long-range
Coulomb energies resulting from charge redistribution
and rehybridization of the dangling bonds. Unlike other
authors who have wused concentration-independent
and/or empirical parameters, the vacancy formation en-

ergy from Ref. 15 is concentration dependent. The
values for Hg,_ . Zn, Te are given by
AE,, =—(0.23x,+0.89) eV,
27

AEzn= —'(0264‘1, +0.98) eV y
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and for Hg, ., Cd, Te

AEng —(0.14x,+0.89) eV,
(28)
AE 3= —1(0.14x,+1.02) eV .

The pair interaction terms for the bulk (¢) and surface
(€*) are provided by Chen and Sher,'* who determined
these parameters from substitutional energies when an A4
or B atom is removed from the bulk. These substitution-
al energies are calculated using Harrison’s bonding
theory'® along with the valence-force-field model."’
Effects incorporated in the substitutional energies include
strain and chemical terms that arise as the alloy relaxes
upon removal of an atom. For our surface interaction
parameter, however, the strain term in the substitutional
energy is set to zero to aliow for strain release. Our ap-
proach to adding strain effects differs from that of Wyn-
blatt and Ku.'>'? Their entha'py of segregation was ob-

10 7
l/
’/

(a) T=1000 K R
0.8 1 e

—a— £ /k=423K ’/

7/

—a— £/k=5875K e

0.6 1 i
’/
- /
> e
041 e
'/
’/
’/
0.2 1 i
‘/
’/
’/
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
HgTe X b CdTe
1.0 7
’/
() T=600K /’

0.8 1 —a— € /k=-423K ’/'

—a— € k=5875K //

"0.0 0.2 0.4 0.6 0.8 1.0
HgTe Xy CdTe

FIG. 1. Fractional surface concentration (x,) of CdTe as a
function of the fractional bulk CdTe concentration (x,) at the
(111 face of Hg,.,Cd, Te. Results are from the quasichemical
approximation using an experimental /@) and theoretical value
{2 for the bulk interaction parameter. (a) T =1000 K. (b}
T=600K.

38

e

PATRICK, CHEN, SHER, AND BERDING 39

tained by taking Eq. (14) and adding a term derived by
Friedel'® who used elastic continuum theory 1o calculate
elastic strain energy in a dilute alloy. They did not
differentiate between surface and bulk interaction param-
eters and considercd only the top surface as being
different from the bulk.

With these parameters, numerical layer compositions
were calculated using Eqs. (13) and (14) for the regular
solution and Eqgs. {17) and (18) for the QCA solution.
The assumption was made that a certain layer N is the
bulk layer and those layers above the Nth layer (i <N)
will have different layer compositions than the bulk. A
total of N nonlinear coupled equations were then solved
for the layer compositions. In order to make sure enough
layers were taken, the calculation was repeated for
N =N +1 until convergence close to the bulk value was
reached. For most systems and temperatures presented
in this report, four layers was enough. For most of our

1.0
(@) T=1000K
Idend 4

08 {—a— Surface &

——0—  Surtace(No Strain release) . %

—o0—  Second Layer w7,
0.6 1 W

’/
- /
= L4
0.4 1 4
0.2 1
0.0 v T - v
0.0 0.2 0.4 0.6 0.8 1.0
HgTe Xy ZnTe
1.0
®T=600K
Idend ,

0.8 —a——  Surface s

—0—  Surface(No Strain release)

B
0.6

0.4 1

0.2 1

0.0 0.2 0.4 0.6 0.8 1.0
HgTe X, ZnTe

FIG. 2. Fractional surface concentration (x,) of ZnTe as a
function of the fractional bulk ZnTe concentration (x,) at the
(11D face of Hg,_,Zn,Te at temperatures of (a) T =1000 K
and (b) T =600 K. All nonideal curves were calculated in the
quasichemical approximation with the theoretical interaction
parameter from Chen and Sher (e /k =62.94 K).
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cases we have looked at, the regular and QCA formalisms
gave similar results, so only the QCA are presented. This
is borne out when one calculates the short range disorder
parameters, which were always close to one for all in-
teraction parameters and temperatures considered.
Figures l{a) and l(b) show the results for Hg, . ,Cd, Te
at temperatures of 1000 and 600 K. For the bulk interac-
tion parameter, the theoretical value from Chen and
Sher' is € /k = —2.92 K, while an experimental value'®
of e /k =58.75 K 1s also shown for comparison. For both
cases the surface interaction parameter is eS/k =—4.23
K, calculated the same way as the theoretical bulk value
but with the strain term set equal to zero. Since the
theoretical parameter is small, both regular and QCA re-
sults are very close to the ideal case. The layers concen-
trations beneath the surface are very close to the bulk so
are not shown. As expected, all figures show that for all

1.0
(a) T=1000K

0.2 1

M T=7557K
Ldend
087 —a— Surfsce
——0——  Surface(No Strain relense) <
——0-—— Second Layer ’/
——unpeee Third Layer

0.6 1

0.4 1

0.2 1

0.0 0.2 0.4 0.6 08 1.0
HgTe X, InTe

FIG. 3. Fractional surface concentration (x,) of ZnTe as a
function of the fractional bulk ZnTe concentration (x,) at the
(111) face of Hg,_,Zn,Te at temperatures of (a) T=1000 K
and (b) T =755.7 K. All nonideal curves were calculated in the
quasichemical approximation with the experimental interaction
parameter (e /k = 125.96 K.
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alloy concentrations the component with the weaker
bonds (Hg) has segregated to the surface. Also note that
as the temperature increases the amount of segregation
decreases because the entropy term ( — T'AS) is now dom-
inating to create more disorder (i.e., less segregation).

Presented in this paper are results for Hg, ., Zn, Te us-
ing both an experimental interaction parameter, €/k
=125.96 K, and a theoretical value e/k =62.94 K. In
all cases the surface interaction parameter is set at
e5/k =6.04 K. Figures 2(a) and 2(b) show the segrega-
tion curves using the theoretical interaction parameter at
temperatures of 1000 and 600 K. As with the
Hg,_,Cd,Te case, Hg segregates to the surface layers
with the amount of segregation increasing with decreas-
ing temperature. In addition, the layers below the sur-
face begin to show appreciabie deviations from bulk con-
centrations as the temperature decreases. In order to
show the effect of strain release in our calculations, each
figure also contains calculated results where the surface
interaction parameter is set equal to the bulk interaction
parameter. Note that in each case, the amount of segre-
gation due to strain release is reduced in the HgTe-rich
side and to a smaller degree the amount of segregation is
enhanced in the ZnTe-rich side. This confirms the state-
ments of Wynblatt and Wu'>!? in regards to segregation
in dilute compounds.

Figures 3(a) and 3(b) show the results using the expen-
mental interaction parameter at 7 = 1000 and 755.7 K.
The last temperature is the critical temperature for mis-
cibility calculated in the regular solution theory
(T,=Z¢e/2k). As expected, the trends are the same as
with the previous case. More segregation is observed be-
cause of the increased value of e /kT.

1V. DISCUSSION

Models for surface segregation within the framework
of the regular and quasichemical approximations have
been applied to the I1-VI compounds Hg, _,Cd, Te and
Hg,_,Zn Te. As mentioned in the introduction, it has
been suggested that Hg,_,Zn Te might be a better can-
didate for an infrared material than Hg, _,Cd, Te. In re-
gards to surface segregation, our results show this to be
the case. Let us compare the amount of Hg enrichment
at the surface around the bulk concentration x,
=0.1-0.3, the typical region for infrared applications.
Referring back to Figs. 1-3, for any given temperature,
more Hg segregation is seen in Hg,_,Cd, Te than in
Hg,-,Zn Te, with the effects of strain release providing
even less Hg segregation in the Hg-rich side of
Hg,_,Zn, Te. Figure 4 shows the layer concentrations at
the growth temperature of 973 K for Hg, 4,Cd, 5oTe and
Hgg gsZny sTe. At these concentrations, both have ap-
proximately the same band gap. The experimental in-
teraction parameters were used in the calculations. The
reduction in Cd at the surface layer for Hg, 3oCd, ,oTe 1s
65% while the reduction in Zn at the surface of
Hgg 3sZny sTe is only 28%.

In general, let us reiterate the basic conclusions that
have come about from our studies.

(i) The amount of surface segregation on the top layer
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FIG. 4. Layer concentrations at the growth temperature of
973 K for Hg, 50Cdo 20Te and Hg, ;sZn,, sTe. Experimental in-
teraction parameters were used.

depends primarily on the difference in the vacancy forma-
tion energies, AE , —AEg, which is the difference in the
energies required to move the constituent atoms from the
bulk to the surface in the alloy. As expected, the
weaker-bonding elements segregate to the top layers.

(i1} The strength of the second-neighbor term €/kT
determines how far from the ideal case the curves will be
and how many layers below the surface some appreciable
amount of segregation will occur.

(iii) The effect of strain release on segregation is deter-
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mined in this formalism by the difference in our surface
and bulk interaction parameters. As with dilute alloy
cases, if 4 is the atom that goes to the surface most easily
in the absence of strain, then strain release in A, B,_,C
pseudobinary alloys will reduce segregation at the BC-
rich side and enhance it somewhat at the AC-rich side.

The models presented here have considered only pair
interactions. Cluster models, where the alloy s divided
up inte microclusters of arbitrary size and all interactions
within the cluster considered, are better sumited for zinc-
blende structures and provide a measure of short-range
correlation in the alloy.'® The application of a cluster
model in surface segregation studies should provide more
exact results, especially at temperatures below the critical
temperature for order and/or disorder. However, to pro-
gress beyond predictions of trends more accurate esti-
mates of the segregation interaction parameters are need-
ed.

While our results for 1I-VI alloys have agreed qualita-
tively with metallic systems in regards to their surface be-
havior, we have not found any specific surface segrega-
tion experiments or semiconductor alloys to compare
with. We call for experimentalists to look into this
phenomenon in this important class of alloys.
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ON PASSIVATION OF Hg1xCdxTe AND Hg;_xZnyTe
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ABSTRACT

We argue that passivation of HgCdTe and HgZnTe is related to tendencies
of the alloy constituents (and impurities) to segregate to interfaces. In the
worst case, the surface is so Hg-rich that it is a semimetal. We presenta
model that offers insight into the mechanisms driving segregation for these
alloys to vacuum, CdTe, ZnTe, ZnS, and various oxide interfaces, The
crystal-orientation-dependence of the effect is also discussed. We con-
clude that segregation is minimized by using CdTe or ZnTe as the
passivant.

I INTRODUCTION

This paper presents a model of the behavior of various passivants used on
Hg1.xCdxTe and Hg1.xZnxTe alloys. The model is capable of explaining many of the
phenomena that impact surface leakage, which surfaces are passivated most easily, and
how various passivants modify active device elements. The model treats segregation of
the alloy constituents at interfaces and is extendable to impurities. In all alloys, the equi-
librium concentration is never constant from the bulk to an interface (particularly a free

* This paper was presented as an added paper at the 1989 meeting.
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surface); one species always segregates preferendally.! The interface concentration gen-
erally returns to its bulk value in a few atomic spacings. depending on the material in the
passivating coating and the effective temperature at which the equilibriurmn is established.
Segregation of this sort is well-documented in metal alloys, 2.3 but has received litte
attention in semiconductors. Concepts developed in the metals literature have been
incorporated into our formalism. At this point ,many quanttatve details of the model are
still incomplete; however, we have identified the major underlying physical phenomena
and trends among a broad range of effects can be deduced from the model!’s logic
structure.

II DISCUSSION

The vacuum surface of an A).xBxC alloy will be discussed first. For definiteness,
consider a (111) A surface. Under ideal circumstances, this surface is cation-terminated,
and each cation makes three bonds to the underlying anion layer and having one dangling
hybrid pointing to the vacuum. In our calculation, the solid is thought of as a collection
of anion and caton layer pairs.! Interactions among the atoms in each layer and between
the layers are summed to get the enthalpy of the solid. The entropy is also evaluated
using a new quasichemical combinatorial method.4 The free energy is minimized to find
the composition xj, i = 1,2,3,... of each layer. Details of this method can be found in prior
publications. 14

Pamrick, R.S., A.-B. Chen, A. Sher, and M.A. Berding, 1989: “Surface Segregation in
Pseudobinary Alloys,” Phys. Rev. B, Vol. 39, No. 9, pp. 5980-5986. Reference to much of the
relevant literature of this subject can be found in this paper.

2 Williams, F.L., and D. Nason, 1974: Surf. Sci., Vol. 45, p. 377.

3 Kumar, V., D. Kumar, and S.K. Joshi, 1979: Phys. Rev. B, Vol. 19, p. 725.

4 Sher,. A., M. van Schilfgaarde, A.-B. Chen, and W. Chen, 1987: “Quasichemical
Approximations in Binary Alloys,” Phys. Rev. B, Vol. 36, No. 8, pp. 4279-4295 (September).
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Two major effects drive segregatdon. The first, referred to as the chemical driving
energy, is related to the fact that the solid can minimize its enthalpy by having the con-
sttuent on the surface that makes the weaker bond. However, having all of one class of
atoms on the surface is unfavorable to the enropy. Hence, the surface concentraton is a
compromise. The second driving mechanism is strain release. An impurity that has a
bond length mismatched with the major constituent has less strain energy on the surface
than in the bulk. Hence, the low concentration constituent of a bond-length-mismatched

alloy tends to go to the surface, e.g., in HgjxZnxTe for x > 0.15, the Zn is driven to the
surface. Near x = 0.5, neither species is preferentially driven to the surface by strain
release, and in the high-concentration region the opposite species goes to the surface. If
the low concentration species also makes the weak bond, then the two mechanisms rein-
force one another and enhance segregation; in the opposite case, they compete and seg-
regation is reduced. In HgjxZn,Te for x < 0.25, the mechanisms compete so as to
reduce segregation. Strain release plays little role in Hg1_xCdxTe, because the
components are nearly bond-length-matched.

In both Hg;-xCdxTe and Hg_xZnxTe, the equilibrium surfaces are Hg-rich relative
to the bulk. The layer concentration returns almost to that of the bulk by the second
layer. However, in both cases, for x in the range used for long-wave detectors, the
surfaces are semimetals that look n-type. Thus, any passivation procedure must begin by
carefully removing any equilibrium surface layers. Figures 1 and 2 show the equilibrium
vacuum surface concentration versus the bulk concentration for a sample equilibrated at
973 K. If a lower temperature had been used, the segregation would have been more
severe. One problem with HgCdTe may be that diffusion persists to low temperature;
hence, the effective equilibration temperature may be low.

The (111) A surface has one dangling catdon bond. The (110) surface also has one
dangling cation bond, but the bond density is higher than on the (111) A surface. Hence,
the (110) surface segregates slightly more than (111) A. However, there are two and
three dangling bonds per cation, respectively, on the (100) and (111) B surfaces. Hence,
those regions of the surface that are cation-terminated should be progressively more diffi-
cult to passivate, at least in Hgj_xCdxTe, where the chemical term dominates. However,
particularly for the (111) B surface, a fair portion of the surface will be Te-terminated.

2 underlying cations will then make four bonds to Te, just as the bulk atoms do. Thus,
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passivation should be easy in these regions. Because the Te-terminated patches are easy
to passivate, and because the cation-terminated patches are difficult to passivate, this is
another source of variability for imaging arrays.

The way these effects are modified by CdTe and ZnTe capping léycrs 1s also shown
in Figs. 1 and 2. For Hg1_xCdxTe, the segregadon in Fig. 1 is almost completely
removed by both passivants. The reason is that the catons at the inierface between the
HgCdTe and the capping layer now make four Te bonds, just as they do in the bulk. Asa
consequence, the only energy difference between a Hg or Cd in the bulk and at the inter-
face stem from small metallization-induced local bond and small back-bond changes.
The effect of these passivants on Hg].xZyTe seen in Fig. 2 is less complete because of
the strain release contribution. Here, the ZnTe leaves the interface slightly Zn-rich, while
CdTe leaves the interface slightly Hg-rich relative to the bulk. However, both passivant
materials still are reasonably effective.

The results in Figs. 1 and 2 are idealized: They are calculated as if the CdTe and
ZnTe passivation layers stay fixed at the equilibration temperature, 973 K in these fig-
ures. This is unrealistic, the CdTe will certainly interdiffuse with, for example, the
HgCdTe to leave a graded concentration region at the interface that is Cd-rich. This grad-
ing would have a range determined by the time diffusion is permitted to occur and could
be many layers thick. On the other hand, the ZnTe will not interdiffuse into the HgCdTe,
if after it is deposited, all processing remains below the critical spinodal transition
temperature. Thus, ZnTe may prove to be a more temperature-stable passivant. Only a
few atomic layers of ZnTe are needed to serve as the passivant; accordingly, strain-
induced misfit dislocations can be avoided. If a thicker insulator, or a protective layer is
needed (rather than just a layer to cut down surface leakage), CdTe or some insulator can
be put on top of the ZnTe to finish off the passivation.

The effect of ZnS, Photox, SiO2, or anotic oxides can also be deduced from this
model. Take ZnS as an example. Now on the (111) A surface, the extra cation bond is
made to a sulfur. The CdS and HgS bonds are much stronger than CdTe or HgTe, respec-
tvely, and the CdS bond is much stronger than HgS. Thus, the CdS bond dominates the
behavior, and Cd preferentially segregates to the interface. While this is preferable to
having a Hg-rich interface, because it opens the bandgap rather than narrowing it, other
troublesome side effects may be caused. We have not yet discussed dopant
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(nonisoelectronic impurity) segregadon. If the dopants preferentally segregate to the
interface, that too can cause high surface leakage. Most impurities also make stronger
bonds to S than to Te, and so will tend to segregate to the interface. No quanttative anal-
ysis of these effects have been done yet, but the direction of wends is clear.

Oxides will behave like the sulfides, but the likelihood of epitaxial interfaces over
substandal regions is smaller. Hence ata (111) A interface, for example, where the bond
density of the semiconductor and capping layer are grossly different, one expects, a
distribution of cation-oxygen and dangling bonds. Thus, segregation will be driven by
the statistical average of these effects over a given domain. If different domains have
different oxide crystal orientations, stoichiometries, or (in the nadve oxide case) different
compositons (e.g., tellurium oxide, cadmium oxide), or mercury oxide, then there will be
segregaton patterns over the Hg1_xCdxTe surface with different cd and dopant
concentrations. As long as the interface is always Cd-rich, this may cause minimal
problems, but it is bound to affect the uniformity of array performance.

oI SUMMARY

The model presented here is incomplete, but broad guidelines for Hg;_xCdxTe passi-
vation can be stated:

+  The top few layers of material must be removed before deposition of a passiva-
tion layer.

e Te-bearing compounds are the best materials choice to minimize interface con-
centration profiles.

«  Epitaxial layers are best, but if polycrystalline materials are used, they should at
least be properly oriented polycrystals.

+  ZnTe may be more stable against interface thermal degradation than CdTe.

»  The easiest orientations to passivate are the (111) A and (110), and progres-
sively harder ones are cation patches on the (100) and (111) B surfaces and on
these latter surfaces careful treatments to avoid cation patches may be espe-
cially helpful.

e Nothing has been said about radiation damage hardness yet, but the model
obviously offers a logic structure in terms of which to understand the question.
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Abstract. The band structures of HgTe, CdTe, ZnTe, the alioys Hg, _,Cd,Te (xcr)
and Hg, _ Zn Te (nz7), and several small-gap superiattices (s.) are caiculated
using a tight-bir.ding modei. Qur calculations show a nearly linear dependence of
the energy gap on the concentration in ucT, but a strong non-linear variation in HzT
The eiectron mass as a function of the band gap is found to be the same in HCY and
HZT in the small-gap region. Our calculated s. bands, in fair agreement with the
most recent experiments and theories, support the assumption of a large valence

band offset (350 meV) between HgTe and CdTe.

1. Introduction

Because of structural weakness in Hg, . ,Cd Te (HCT),
the Hg, .Zn_Tc alloys (HzT) and related superlattices
{sL) may become compelitiv¢ infrared materials. In this
paper we examine the important parts of the band
structures of HCT, HZT and several sL systems. Our study
is based on a second-neighbour tight-binding (SNTB)
model, which has been implemented for all the systems
concerned, including the pure compounds, the alloys and
the sL. The spin-orbit interactions and the strain effects
in the sL are also included. The alloy disorder is treated
within the molecular coherent potential approximation
(McPA) [1, 2]. The sL band structures are calculated using
a difference equation approach [3].

2. Pure compounds HgTe, CdTe and ZnTe

The sNTB model uses four orthonormal local s- and p-
orbitals per atom. The first- and second-neighbour inter-
actions are assumed to be of the two-centre type. The s-
term values ¢, are taken such that the —e¢, are the
experimental first ionisation energies of the atoms. The p-
term values ¢, and other interaction parameters are
adjusted to fit the important band quantities of the pure
compounds. Figures }a)-1(c) display the calculated
bands for the three pure compounds. In comparing the
present model with the most popular TB band model for
the HgTe CdTe sL by Schulman and Chang (sc) [4], we
found that the bands around the gaps from both models
are rather similar. The largest discrepancy between the

0268-1242/90/035100 -~ 03 $03 50 © 1990 I0P Publishing Ltd

two models is tn the valence band width. Our model puts
the X, level at the experimental values [S] of —§ and
—5.5eV respectively for CdTe and HgTe. while the cs
model sets it about 2 eV deeper. Since this discrepancy
happens at an energy far from the fundamental gap. it
should not strongly affect the band structures of the sL
near the gap.

3. Hcr and w2y alloys

The band parameters of the pure compounds are used 1n
the alloy calculation without any further adjustment. The
dominant disorder in HCT and HZT comes from the large
difference in the s-term values between the cations.
However, the fluctuations in the off-diagonal matrix
elements will also affect the detailed band structures. This
alloy disorder is treated within the MCPa as described in
1, 2].

The major results for the alloys are presented in figure
2, where the band gap is plotted as a function of the alloy
concentration, and in figure 3, where the conduction
band mass is plotted as a function of the band gap. For
HCT the band gap E, deviates only slightly from the
straight-line average of the pure compound values, E,.
Hoewever, HzT shows a significant bowing below the
average value. Figure 3 indicates that the m?-value for a
device operating at the same wavelength in the narrow-
gap region is nearly the same whether HCT or HZT is used.
Finally we note that the present calculation agrees with
[2] in the McPa self-encrgy. indicating that the disorder
effect on the lifetime is important only for states well
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Figure 2. The band gaps of Hg, _ ,Cd,Te and Hg, _,Zn,Te
as a function of the alloy concentration x.

above and below the band edges in both HCT and HzT,
and is not a himiting factor on the mobilities of electrons
and holes in the low-field transport in HCT and HzT.

4. Superlattices

To use the TB model to treat the sL. we further allow a
nigid shift of all the term values in a slab with respect to
the other to produce the desired valence band offset AE, .
Table 1 compares our calculated band gaps at & = 0 for
the (001) st HgTe 'Cd, g5Hg, ;s Te with the experimental
and theoretical values based on the s¢ model quoted in
[6] for several combinations of slab thickness repre-
sented by the numbers of double layers of atoms (n, m) in
the slabs. First we see a smali but consistent discrepancy
between the two theoretical models. The s¢ model yields
a gap about 10- 30 meV smaller than ours. The experi-
mental data are in better agreement with the calculations
with a valence band offset AE, = 350 meV betwecn
HgTe and CdTe than with AE, = 40 meV. However, the
agreements are not really satisfactory. For exampile. it is
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apparent from the theory that the band shrinks as the
ratio n,m increases, whereas the experimental data show
an increase in the gap going from the (16, 16) to (17, 15)
samples. For those samples in which there is a clear gap.
our calculations with AE, = 350 meV are seen to agree
with experiments slightly better than the sC model. The
comparisons for the first three systems with (n,m) equal
to (24, 9). (25, 10) and (24, 15) are less transparent,
because the sL band structure has a nearly zero or
negative gap. While we only list the gap at & = 0, the
actual gaps may occur at other k points. The complexity
of the bands may be illustrated by comparing our bands
for the sample with (n, m) = (26.9) shown in figure 4 with
those in figure 9 of [6] for the same system using the same
AE, = 350 meV.

In figure 4 the bands are plotted along k. (perpendi-
cular to the slab) and k, (paraliel to the slabs). Along k_,
all the bands which are derived from the heavy-hole
bands of the slabs are practically horizontal lines owing
to the large AE, used. The only two bands with apprecia-
ble dispersion are those derived from the conduction
band and the light-hole band. The one derived from the
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Tabie 1. Comparison between the caliculated band gaps (1n meV) in the present
work with the experimental and theoretical vaiues of [6] for the

(001)HgTe/Hg, ,.Cd, ¢, Te superiattices

No of layers Theory Experiment (6]
(HgTe/HgCdTe)
AE, = 40 meV AE_ = 350 meV Transport Optical
Present [6) Present [6]
(24.9) 33 5 -1 -30 <5 - 16
(24.10) 37 12 2 16 — 26 <8 -10
(24.15) 65 51 16 1 <5 -3
(19.12) 89 68 43 25 35 41
(18.14) 107 89 56 42 54 53
(16,16) 135 119 81 70 5€
(17.15) 121 104 68 55 80 64
(18,18) 117 104 61 50 81

£ {meV)

'SOT === 1
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006 002 o0
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Figure 4. The calculated band structure of (001)
HgTe/Hg, ,,Cd, ¢sTe superlattice with the numbers of
layers (n, m) = (20, 9) and with a valence band offset
AE, = 350 meV between HgTe and CdTe.

conduction band crosses a heavy-hole band at k, = k; =
0.357/d in our model and at k, = 0.42n,d in [9], where d
is the st period. This is therefore a zero-gap system. The
light-hole mass for the band along k, for k. = k,. as
shown by the broken curve, is extremely small, m* <
0.001: this was also found in the Shubnikov-de Haas
experiment on the hole orbit of this system by Sciler et al
[7]. who also found a sudden increase in the mass going
from the low to the high magnetic field. They indicated
that the rapidly changing mass as a function of k; can
explain the experimental result. The largest difference
between the two calculations is the location of the band
originating from the slab conduction band at & = 0. Our
calculation gives an inverted gap of —12 meV while the
¢s model gave a value of about —40 meV. We also note
that in the side bands (along k,) with k, = 0. the top
valence band goes down and then up as k, increases. This
is due mainly to the inclusion of the strain in the HgTe
slabs. This intrinsic complexity in the sL band structures
and other extrinsic complications such as interfacial
diffusion and non-uniformity of the Hg concentration are
among the difficulties in pinning down the band struc-
tures in the small-gap sL.
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S. Conclusions

The band structures for the pure compounds HgTe.
CdTe and ZnTe. their alloys and the st made from these
systems have been studied using an sNTB model. The
results for the important parts of the band structures for
the pure compounds and alloys are in substantial agree-
ment with our previous results [2] based on a more
elaborate scheme. The most imnortant result for the
alloys is that HZT 1s as good an infrared material as HCT in
terms of the electronic structures in the smail-gap region.
Our results for the sL. in fair agreement with the most
recent theoretical and experimental studies. support the
assumption of a large valence band offsct of 350 meV
between HgTe and CdTe. However. the sL band struc-
ture is less understood than that in the alloys. More
detailed comparisons between theories and experiments
are needed to improve our understanding of the band
structures of small-gap superlattices.
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The band theory of Kornnga. Kohn, and Rostoher {tKKR' based on the Green-function method
i extended to space-filing potentials. A numerical test using the Mathieu potential shows good
convergence for the bands up to 1.5 Ry with / < 4included in the angular-momentum expansion for
the wave functions. Our results strongly support the applicability of the wull-potenual KKR o bulk

electronic-structure problems.

L INTRODUCTION

The Kornnga. Kohn, and Rostoker (KKR} band
theory' - is an elegant theory for the one-electron energy
bands in a closed-packed crystal for which the muffin-un
{MT) construction for the potential is a reasonable ap-
proximation. To expand the scope of application, consid-
erable effort has been expended to extend the KKR
theory to full crystal potentials.' '' One concern about
such extension is related to the so-called near-field correc-
tions (NFC) (Refs. 3-5) arising from the expansion of the
KKR Green function beyond the muffin-tin region. Al-
though there are proofs™*!' showing that NFC do not
exist, questions have been raised about the applicability
of the theory.'” Since space-filling potentials are non-
spherical and the Wigner-Seitz cell boundary is not
smooth, we are further concerned about the speed of con-
vergence in terms of angular-momentum (/) expansions.
In this paper the integral equation approach of Kohn and
Rostoker” (KR is used to derive the full-potential KKR
(FP-KKR! equation explicitly. One advantage of our
denvation 1s that all the quantities involved are functions
of r within a unit cell. Thus we can avoid the uncertainty
in extending the wave function beyond the unit cell en-
countered in some other derivations.>''" We have also
tested the convergence by comparing the numerical re-
sults with the exact solution for the Mathieu poten-
tial'' ' in the simple-cubic crystal. Excellent results for
the band structure in the energy range of interest are ob-
tained with a maximum value of / =4 included in this ex-
pansion.

The fact that the Muthieu potential is exactly soluble
gives it an advantage for testing purposes over working
with realistic potentials.**!" Our test complements the
empty-lattice potential’™® * to provide a stringent test for
the FP-KKR theory. The streng angular-momentum
dependence in the Mathieu potential gives a good repre-
sentation of the anisotropy that is present in the open
structures pertaining to many semiconductors and insula-
tors. The restriction of the KKR to closed-packed met-
als imposed by the muffin-tin approximation is lifted by
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the full-potential method discussed here. The results ob-
tained here should encourage the applicanon of this
theory to real crystals.

II. THE FULL-POTENTIAL KKR EQUATION

In this section we want to show that the Kohn-
Rostoker integral equation can be simply extended to ob-
tain the full potential KKR theory. The Schrodinger
equation in the band calculation

[~V +Vindtr=Edr) (b

for a full crystal potential }Vir) is equivalent to solving
the following integral equation:*

WE.n= | GUE r, e Vie' W (E e dr 2
k k k

where the integration is over the Wigner-Seitz cell of
volume 7, and k 1s a crystal wave vector. G, (E .r.r'!1n
Eq. (31is the KKR free-electron Greer's function®
1 exp[i(K, +k)tr—r"1]

- K1
. (K, +kF —E

G Eirr )=~

where K, are the reciprocal-lattice vectors. Alternative-
Iy G,{E:r, 1’ can be expressed as

G E;r ")
1 explik r—r'—R,’

= Cexplik-R,) . 4
4772 r—-r—R expi *

where x=\ E for E>0and x=iv E for E <0, and R,
are the lattice translation vectors. To derive the FP-
KKR equation, we first observe that Eq. (3) can be cast
into a surface integral,

f[Gk(E:r,r'lV'dvk«E.r’)
S
- E VG ULE ) ]dS' =0, 0
where S is the surface of the Wigner-Seitz cell.
Since the ¢ in the surface integral exceeds the
muffin-tin radius . we need to consider the expansion of
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the Green function beyond the onginal range of Kohn
and Rostoker. Several authors have already considered
this point. For simplicity, we shall only consider the case
with one atom per unit cell. Since this expansion is a cen-
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tral point of controversy, we rederive the results exphee-
Iy 1in the Appendix for the range of r and r' needed here.
We show that the expansion

G Eire =3 [ S[i" "By (A EW KTl (k0= k0 [ J (KDIN (KT ] | ®
L L

is valid as long as both r and r’ are inside 7 and satisfy the
following condition:

r <r.< R, forall R, =0. (7

In Eq. (6) the notations J;(xr}=j(kr)¥,(r) and
N (kr)=n,(kr Y, (r) are used, where j, and n, are, re-
spectively, the spherical Bessel and Neumann functions,
Y, is a real spherical harmonics, and L represents the
double indices (I,m). B; ;.(k,E) is the usual KKR struc-
ture constant.>'’ We note that for any r! smaller than
r,,» the condition in Eq. (7) is satisfied for all r’ contribut-
ing to the surface integration in Eq. (5). The condition
'l < R, in Eq. (7) holds for most lattices; exceptions
are those, for example, with long narrow cells. For such
cases, this condition can be satisfied by breaking the unit
cell into smaller cells including so-called “empty cells”
which do not contain an atomic nucleus.

The wave function inside the cell = can be expanded in
a basis set { @, {E. 1)} as

W(Ern=73 a,(k,EYP, (E ). (8)
L
pRALIIDS izi‘""'BLL,(k.E)sL.L..fE) +xCyE)
L L L
where
S AE =k [ [kt @ AE ] dS (13)
and
CAErv=x [ [N ikt ). & (Er)-dS" . (14)

In the above, the notation [F.F,}]=F\V'F,—F.V'F,
has been used. The surface integrals in Egs. (13) and (14)
a-e over the boundaries of 7 as indicated by S.. Since
J,(«kr)in Eq. (12) are linearly independent functions, the
following set of homogeneous equations holds:

S i};i""BLL.(k,E)SL.L..<E)]
L [

(15)

+xCy; AE) |ag Ak, E)=0 .

This ts the FP-KKR equation that we are after.
52

g Er e )=k[J (kr)N (kD)= N (k)] (kT)]

a, (k,E)=0,

J

The basis function @, tE 11 1s a regular solution to the
Schrodinger equation inside 7,

[~V +ViD]®(En=E® (Er, 9

and behaves like J; (xr) at the origin r =r,—0, which 1
typically the location of the atomic nucleus. This basis
set can be calculated using the following integral equa-
: 4
tion:

o, (En=Jkr)+ ¥ f'gL.(E;r.r’)V&r')¢L(E.nd".' .
L' 1

o

where g, (E;r,r') is a free-particie Green's function and
1s defined as

1

We note that the basis function ®,(E,r) 1s coupled 10
other angular-momentum channels for r > r;, because the
crystal potential ¥(r)is not spherical.

The expansions of G in Eq. (6) and of ¢ in Eq. (8) can
be substituted in Eq. (5) to obtain

r<r (R3]

m

We note that our derivation is similar to Nesbet's
derivation.!! We hope, however, that the above explicit
derivation may be more accessible to some readers. It is
also useful for establishing the notation necessary for the
description of the application of FP-KKR theory to the
solution of the Mathieu potential which constitutes the
main result of this paper.

HI. CALCULATION OF S AND C MATRICES

The surface integrals for the S and C matrices in Egs.
{13) and (14) can be very time consuming. It is desirable
to seek simplification of these calculations in a real appli-
cation. One plausible approximation which is consistent
with the KKR spirit is to expand every quantity involved
in angular-momentum components. Equations (13) and
{14) are equivalent to the volume integrations

Syt EV=x [ J, (ke WV (r)® (E.rids (16)

and
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Co(Ev= =8, +x [ NoaoVIn® (Endr . (7

One can free the hmits of these integrals by replacing the
crystal potential ¥ by the truncated potential V7,

Vi =Vine(o , (18)
where otr) is a step function and 1s defined as
fl, for r within =
olr)= (19

\0. otherwise .

The angular-momentum expansion for the basis function
1s assumed to be

P Er=3é,(EnY, (1), Qo
<

anc the truncated potential V7 is expanded as

Vie=S vy . 2n
L

The integrations in Egs. (16) and {17) can be reduced, re-
spectively, to the simple radial integrations

Sy EV=kS [ i kr WV dr)by - (E,rirdr (22)
L
and
CL.L(E)=—bL_L»+x2f ‘nL.(Kr)VL.L.-(r)
Lo
X, (E,riridr, {23)

where r_ 1s the radius of the circumscribing sphere of the
Wigner-Seitz cell. The V;,.(r)is given by

Vign= [ ¥ v iie)y, ridQ

=3 CL,-V]in, (24)
L

where

Cti-= [ Yy, (0¥ (ndQ (25)
is a Gaunt coefficient.

Note that in the above the basis function ® (E,r} is
assumed to be calculated from Eq. (10}, where ¥ (r) is the
full crystal potential. This is the same procedure used by
Brown and Ciftan (BC).® The original Williams-Morgan®
(WM) approach, however, used the truncated potential
V7 for the calculation of the basis function in Eq. (10). If
expansions of the potential and P, in Eq. (10} include all
the angular-momentum components, both approaches
probably will give the same results for the band structure,
provided both converge.'!*! In practice, the expansion is
limited to a certain /,,; therefore, these two approaches
yield different results.

In the actual calculation of the basis functions using ei-
ther } or V!, we first write the potential as the sum of ¥,
and A}, where V', is the spherical part of the potential
anc. A} 15 the rest. We then solve for the radial wave
fuaction f, corresponding to Fy. Similarly. the basis 1s
written as @, = F;, ~A®, where F;, =f, Y,,and A®, 15
solved from the integral equation

53

A (E;n=T [ g Eir.l AVIE)F L E;rdr
L "t
+ 2 f'gL.(E;r,r')V(r’).MbL(E;r’)dr’ ,
L Ty

26)

iteratively using angular-momentum expansions for all
quantities involved.

IV. APPLICATION TO MATHIEU POTENTIAL

To test the accuracy of the FP-KKR equation and the
convergence in angular expansion described above, we
applied the theory to the Mathieu potennial'® ' of the
form

(27

Viey=-U, cos—2—73+cos-2—17‘l+cos—2£ . 2
a a a

where we took the lattice constant a to be 2 times the
Bohr radius and the potential parameter U, to be 0.5 Ry.
Because the potential is separable, the eigenvalue prob-
lem reduces to three one-dimensional problems. The
band structures and correspcnding wave functions can be
computed to the precision of the computer and can be re-
garded as “‘exact™ in the numerical comparison.

The Mathieu potential is poorly represented by the MT
approximation, because the simple cubic structure 1y
rather open and the potential has a large variation in the

1.8
oet [10]

0.0

081

~1.8
1.8

o84 [110]

0.0

Potential (Ry)

-1.6
1.8

0.8+ [11]

0.0

~081

° r

FIG. 1. Angular-momentum expansion of the Mathieu po-
tential along {100], [110]. and [111]. The sohd circies represent
the continuous crystal potenual ¥ (r}, and the sohd lines are the
truncated potential }'tr). The dotted and the dashed lines are
the sums of the angular-momentum components up to / =8 for
Virrand ¥V is), respectively. r,.r , and r are the distances be-
tween the origin and the face. edge. and corner of the cube, re-
spectively. Notuice that the dotied line and the solid circles are
not distinguishable in the figure.
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interstiial region. For example, with U set to be 0.5 Ry,
the MT constant potential is V, =U,[9/m6~1r))
>0.501 116 Ry, while the actual value of the potential
varies from —0.5 Ry at ({,0,0)ato 1.5 Ry at (4,1, 1)a.

When the full potential in Eq. (27) is expanded in cubic
harmonics V(r)=3, V, (r)K (1), V (r) is proportional
to —Uyj(2mr /a), and the series converges very fast.
With an [, =8, one can achieve a converged V(r), as
shown in Fig. 1. However, in the expansion for the trun-
cated potential, V'(r)= Virio(r)=3, V/(nK (r), the
components

Viin= [ K, (nViria(ndr (28)

have to be carried out numerically with great care. Be-
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cause of sharp edges and corners in ¥'(r), the angular-
momentum expansion is only slowly converging. This 1s
evident in Fig. 1, which shows sizable errors made in all
three directions [100], [110), and [111] in the expansion
of Viuwprol,, =8.

We have carried out the FP-KKR calculation using
the wave-function expansion in Egs. (10) and (24 up to
I ax =4. The basis sets are calculated using both the BC
and WM approaches with the potentials expanded up to
I 2 =8. Results from the MT-KKR approximation are
also obtained for comparison.

In Fig. 2(a), the solid lines represent the “‘exact’” band
structures for the Mathieu potential. The dots are the
MT-KKR results. Despite the crude approximation in
the MT potential, the lowest band is still reasonable. The
MT approximation becomes worse at the higher energies,

Energy (Ry)

0.3
0.2}

g.1}

K (27t/a)

FIG. 2. Comparison of (a) the muffin-tin KKR and (b) the FP-KKR band structures (the dots) with the exact results (the solid
lines) for the Mathieu potential. The symmetry points T, X, M, and R correspond to the wave vector at 0,0,0), ( .0,0), (5,1, 1), and

{(3,3.3), respectively, in units of 27 /a.
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as indicated by the large energy deviations and splittings
of the levels. For example, the “exact” bands from I to
X from I' to M around 0.9 Ry are degenerate due to
separability of the Mathieu potential, while the MT ap-
proximation lifts this “"accidental’” degeneracy.

The full-potential KKR results are compared with the
“exact” band structure in Fig. 2(b). The dots are now the
FP-KKR results and are calculated based on the BC ap-
proach. The agreement is excellent and rather uniform
up to 1.3 Ry. The calculation even preserves the acciden-
tal degeneracy at I at energy 0.88 Ry. The lowest band
has a detectable deviation of 0.016 Ry at R, but has very
small root-mean-square (rms) deviation. The deviations
at R and some other energy states are probably due to the
truncation in the angular-momentum expansions. The
FP-KKR bands based on the WM approach are not no-

I I,
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ticeably different from those based on the BC approach
plotted in Fig. 2(b). However, there are shight differences
between the results of the two approaches. For reference,
we list the deviations of both the BC and WM ap-
proaches and the “exact” energies in Table 1. While the
WM approach gives a larger deviation in the lowest-
energy band around R, the overall rms deviations of these
two approaches are similarly small. These results imply
some freedom in the choice of basis functions. Provided
that reasonable approximations are made in the represen-
tation of the cell potential ¥'7 and in the calculation of
S;; and C;, . from Eqgs. (21) and (22), it appears that the
FP-KKR equation will give reasonable bands indepen-
dent of the exact algorithm for obtaining the ¢, , eg.,
fromTV(r), ¥ ir), or other smooth potentials augmented
to b’

Energy (Ry)

r X M

R r M

K (27/0)

F1G. 2. «Continued'.
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TABLE [. Dewviations of the FP-KKR band energies AF
from the exact values £, , for the Mathieu potennial at several
symmetry points. The subscripts WM and BC stand, respective-
ly, for the Wilhams-Morgan and Brown-Ciftan approaches de-

Symmetry
states AE AE E i1
r, —0.0053 —0.0034 —-0.3414
| 0.0243 0.0223 0.7517
r, —=0.0018 0.0024 0.8653
r,, 0.0034 0.0069 0.8653
R, 0.0274 0.0160 —-0.0827
R 0.0089 0.0064 0.4097
R« 0.0156 0.0145 0.9020
R, 0.0184 0.0171 1.3943
X, 0.0024 0.0005 —0.2551
X, 0.0214 0.0216 0.2372
X 0.0060 0.0056 0.8379
X, —0.0010 —0.0021 0.9515
X, —0.0047 —0.0036 0.9515
M, 0.0016 0.0002 —-0.1689
M. 0.0072 0.0067 0.3234
M, 0.0270 0.0259 0.8158
M, 0.0033 0.0037 0.9241
M, 0.0058 —0.0005 1.0377
V. SUMMARY

The main purpose of this paper is to test the accuracy
of the FP-KKR theory in band-structure calculations.
To help eliminate doubts about this theory, we have de-
rived the FP-KKR equation explicitly from the Kohn-
Rostoker integral equation.’ This FP-KKR theory still
preserves the clear separation between the structural and
potential information possessed in the MT-KKR equa-
tion. The potential information is contained in the S and
C matrices, which can be easily calculated if the basis
functions and potentials are expressed in angular-
momentum expansions. Such expansions are desirable in
a realistic calculation. The whole procedure has been
tested against the exactly soluble Mathieu potential in the
simple-cubic structure. Because of the openness of the
structure and the high anisotropy of the potential, this
potential provides a challenging model to test against any
band-structure theory. Our results show that with wave

J

explixir—¢' =R ')

ax—r'—R, |

=—ik 3 J (kD H] (k(r' +R))
L

=—ik3 [ 3 kO H AR AxT') |
L L

where

e
1, (KR, )=4ry i
LZ

.-b L,
7UC, L H (R,
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functions expanded up to /,, =4 and the potential up 10
{ms = 8. the FP-KKR theory as described above gives ex-
cellent results for the bands in the energy range needed
for solid-state applications. With this method. one
should be able to deal with solids having open structures,
such as semiconductors, for which MT-KKR 1s not suit-
able.
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APPENDIX:
GREEN-FUNCTION EXPANSION

Here we want to show that Eq. (6) is valid when Eq. (7)
is satisfied. Following Kohn and Rostoker,’ we separate
G, of Eq. (5) into two parts,

G (E;r,r')y=gyk E;r,r'V+g,(k,E;r,t'), (A
where g, is the singular part,
1 explikir—r'!)
(k,E;r,r')=—— , (A2)
g 4z ir—r'!
and
gk, E;r,r")
] expliklr—r'—R_ ) GERL) A3
=—— : ‘R, . (A3
ar 5_20 ir—r'—R,! X

For r <r’ <R, and for r and r’ inside 7, the first part has
the expansion g,= —iszJ,_(xr)H;_(Kr' L, where
H,f(xr)=JL (kr)+iN, (kr). Under the same condition for
rand r', Irl <ir'+R,! also holds for a Wigner-Seitz cell,
so that the following expansion is valid:**

(A4)

(AS)

where C,f,_ is given in Eq. (25). Therefore the Green function has the expansion in Eq. (6) with the structure constant

given by

B AK,E)=—ik |8, +i'"""" S H;, (xR, explik-R,) | .

520

o —— e EE—

(A6)
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Abstract. Vacancies are known to play an important role in the Hg-based narrow-
gap ailoys HgCdTe and HgZnTe. in this paper we summarise our recent
calculations of the vacancy formation energies in HgCdTe and HgZnTe. We find
that the vacancy formation energy in these alloys varies non-linearly with alloy
concentration, resulting in higher vacancy densities than those predicted on the
basis of a linear variation of the vacancy energies. Surface segregation in these
alloys is driven by bond strength and bond length differences. We review our
recent calculations which show that the chemical terms dominate in HgCdTe and
result in Hg-rich surfaces, while in HgZnTe the strain terms contribute as well and
result in a less Hg-rich surface, suggesting that HgZnTe surfaces may be more

amenabie to surface processes such as passivation.

1. Introduction

The non-idealities of semiconductors always control de-
vice properties: this is true to an exceptional degree in the
Hg-based narrow-gap alloys (HgCdTe and HgZnTe). In
this paper we review our recent work on two of these
important non-idealities, namely vacancies and surface
segregation. Vacancies in HgCdTe are responsible for the
intrinsic doping in the material and their abundance has
been attributed to the weak HgTe bond. Sher et al (1985)
have suggested that HgZnTe may be a better candidate
than HgCdTe for infrared device applications on the
basis of calculations which showed the HgTe bond to be
stronger in HgZnTe than in HgCdTe, implying a lower
tendency for Hg vacancy formation. Below we review our
calculations (Berding et al 1987, Berding, Chen and Sher,
unpublished) of the vacancy formation energies in these
two alloys. The surfaces of these alloys play an important
role in the vartous device-processing steps. Surface segre-
gation in metal alloys is a well known phenomenon.
Measurements (Buck 1982) have shown that the compo-
sition of the surface may differ from that of the bulk, and
such segregation is also expected to occur in the semicon-
ductor alloys. The same forces that drive vacancy forma-
tion in these alloys also drive surface segregation, namely
the relative strengths of the HgTe, CdTe and ZnTe bonds
in the various alloy (and surface) environments. In this
paper we review our recent work in this area (Patrick et
al 1989).

0268-1242/90/030586 + 04 503.50 © 1990 10P Publishing Ltd
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2. Vacancies

The calculation of the properties of vacancies in semicon-
ductors 1s a difficult problem to which substantial effort
has been directed with various degrees of success. Most
of these calculations have focused on the localised elec-
tronic levels. In HgCdTe and HgZnTe we are interested
in the relative ease with which the vacancies form in the
materials, and how the vacancy concentration varies
across the composition range. In particular, we want to
know whether. for an alloy concentration corresponding
to a given band gap. vacancies will be more of 2 problem
in HgZnTe or in HgCdTe. To answer this question, we
have developed a tight-binding model of the vacancies to
calculate the vacancy formation energies E, in the semi-
conductor compounds and alloys. This model is sum-
marised below.

For the compound semiconductors a Green function
method can be used to treat the vacancy as a point defect
in the otherwise perfect lattice. In the alloys the lattice is
not perfect and is in general disordered owing to the
presence of the two atom species located on the cation
sublattice. Because of this disorder, an embedded cluster
model of the vacancy is preferable for the alloys, so that
the near-alloy environment of the vacancy can be mo-
delled explicitly while the far environment can be treated
approximately (e.g. in the virtual crystal approximation
of VCA).

We have calculated E, for ZnTe, CdTe and HgTe




using a tight-binding model based on Harrison's (1981)
parameters with the repulsive interaction energy selected
to give correct agreement with the experimental cohesive
energies in the compounds. The final state for the re-
moved atom in free space has been used as a reference.
although various other final states can also be calculated.
Atom clusters with up to second-, third- and fourth-
neighbour shells of atoms were used, and each was
coupled to an extended bulk using perturbation theory at
the cluster boundary. Clusters are centred at the vacancy
formation site, and E, is calculated from a difference in
total energies of the cluster before and after vacancy
formation.

The Green function method was also used to calcu-
late total energies and E, for the compounds, using the
same Hamilttonian. For the cation vacancy the cluster
calculations converge very quickly to the Green function
(eflectively an infinite-cluster result). For the anion va-
cancy the convergence is not as fasi, an effect attributed
to the more extended nature of the defect states produced
by the anion vacancy. The relative magnitude of the
anion or cation vacancy formation energies for most
compounds is not changed from the cluster to the Green
function result. so comparisons among the various com-
pounds should not change. Thus we can use the clusters
to calculate E, in the alloys. with a fixed correction across
the composition range to account for the cluster trunca-
tion.

The vacancy formation energies in the alloys are
calculated in a similar manner, with differences of cluster
total energies with and without a vacancy used to
calculate E,. The alioy environment for the first- and
second-nearest neighbours is treated explicitly. with va-
cancy formation energies being calculated for the various
particular arrangements of cations. For exampile, for the
Te vacancy in HgCdTe. E, for five particular near-
neighbour environments of the Te are calculated:
Hg,Cd,. Hg,Cd,. Hg,Cd.. Hg,Cd, and Hg,Cd,. For
the cation vacancy, E, for the various cation arrange-

n: {4 _Hg,Te n:Hg,.,2n,Te
1 2 3 1 2 3 -
© P 1 PO R4
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R
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@  —]
‘.«L‘__.-_‘_.&—
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n: Ly g, Te

Figure 1. Extraction energies in the Te common-anion
alloys as a function of near-neighbour configuration tfor
bulk (vcaA) concentration x = 0.5 The full curves correspond
to the average extraction energies and the broken curves
to the rMs deviations.
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n: HQH-nZnnTe

ﬁ
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ments in the second-nearest-neighbour shell must be
considered. For both cation and anion vacancies the
alloy environment in the third shell and beyond 1s
modelled in the vca.

Results for E, against the first- or second-nearest-
neighbour composition are shown in figure 1. The effects
of the alloy environment are most dramatic for the anion
vacancy, as expected, because the cation substitution
occurs in the first-neighbour shell about the vacancy. A
minimum occurs in E, for Te in HgCdTe and HgZnTe
and arises from the occupation of the defect states, which
in this one-electron picture lie at higher energies in ZnTe
and CdTe than in HgTe. Thus in clusters containing at
least one Hg in the first-neighbour shell the defect
electrons will occupy the lower-lying Hg-like defect state

The effect of the alloy environment is less for the
cation than for the anion vacancy. For all cations, E, is
found to decrease as one goes to Hg-rich clusters in
HgCdTe and HgZnTe. Earlier calculations (Sher et al
1985) based on bond strength modifications in the alloys
predicted that Hg vacancies will occur more readily in
HeCdTe than in HgTe. in contrast to the present predic-
tions. The current results show that the simple bulk bond
strength arguments are insufficient to predict trends in
E,. because they do not include the effects of back-bond
strength modifications due to the vacancy. Thus. al-
though the HgTe bond may be weakened in the alloy,
when an Hg vacancy is formed. adjacent bonds streng-
then, modifving E_in the alloy.

The vacancy concentrations in the random alloys
have been calculated from the above results and are
shown in figure 2. Shown for comparison are the vacancy
concentrations we get if we assume a linear variation of
E, with near-neighbour environment, i.e. a straight-line
variation between the end points in figure 1. For any
given alloy concentration x. an appropriate probability-
weighted average over the clusters is taken to calculate
the results in figure 2. From figure 2 one sees that the
effects of the non-lincarity of E, on vacancy concentra-
tions are quite dramatic. even for the cation vacancy. In
particular, our results predict higher concentrations of
vacancies in the alloys than one wouid expect on the
basis of simple arguments (i.e. a lincar interpolation of £,
from the compounds). We emphasise here the overall
behaviour observed in figures 1 and 2, because the
magnitude of E, and the vacancy concentrations will
depend on the final states available to the atoms forming
the vacancies.

Before concluding, we note that vacancy formation
energies for final states of the cations on the (11DA
surface of the compound can be estimated if one approxi-
mates the (111)A localised states before and after an A
atom is added to it, by similar defect states at the anion
and cation vacancy sites. A difference of the vacancy
formation energies for the free atom final state and the
(111)A surface final state yields an estimate of the subli-
mation energy of an A atom from the (111)A surface.
These numbers are related to the energies necessary to
calculate the surface segregation in HgCdTe and
HgZnTe.
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Figure 2. Relative vacancy concentrations in HgCdTe and
HgZnTe. The full curves correspond to results using E, in
figure 1; the broken curves are based on a linear
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Figure 3. Layer concentrations at the growth temperature
of 973 K for Hg, 50Cdg 2o Te and Hgg 452N, s TE.

3. Surface segregation

Two major contributions drive surface segregation in the
semiconductor alloys. Chemical energies arise from dif-
ferences in bond-breaking energies of the constituent
compounds. This can drive surface segregation, because
fewer bonds are made by atoms at the surface than in the
bulk, and one expects the less-well-bound species (e.g.
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Hg) to segregate to the surface. In lattice-mismatched
alloys. strain energies can also drive surface segregation,
because the removal of a mismatched atom to the surface
results in a lowering of the strain energy in the bulk. The
strain energy release would be expected to be the largest
for the dilute species segregating to the surface. In lattice-
matched HgCdTe. only the chemical energies contribute
significantly to the segregation, while in HgZnTe both
strain and chemical energies contribute.

The surface concentration profile is calculated (Pa-
trick er al 1989) by equating the chemical potential
(defined as the first denivative of the free energy F with
respect to concentration) in each layer, because at equi-
librium the chemical potential in each layer must be
equal. The layers are coupled to one another through the
configuration entropy contribution to F. Calculations
were done within the quasi-chemical approximation
(Kumar et al 1979, Kumar 1981) in which pair interac-
tions only are included, and the regular solution model
(Williams and Nason 1974) in which randomness is
assumed within each laver.

Surface segregation profiles were calculated for the
(I11)A surface of HgCdTe and HgZnTe. Results corre-
sponding to the equilibrium for the ideal (111)A surfaces
at 973 K are shown in figure 3. Results shown are for
bulk  concentrations of Hg,g4sZn,,sTe and
Hgg 30Cdg 50 Te corresponding to the same band gap. A
larger surface segregation is found in HgCdTe than in
HgZnTe, although for both materials at this high temper-
ature the concentration decays to the bulk value within
four atom layers (a layer consisting of an anion and
cation pair of atom planes). For both alloys the surfaces
are found to be Hg-rich, as expected on simple chemical
bond strength arguments. In HgZnTe the strain contri-
bution tends to drive Zn, the minority species, to the
surface. Thus in HgCdTe the chemical energies alone
drive Hg to the surfaces, while in HgZnTe the chemical
and strain energies oppose one another, lessening the
magnitude of the Hg surface concentration enhancement.

Calculations are in progress for the surface segrega-
tion on the (110) cleavage plane and the (100) surface,
which is important in epitaxial grow h. On the basis of
bond strength arguments alone, one would expect the
surface segregation to be larger on the (100) growth
surface than on the (111)A, because of the fewer bonds
made by the surface atoms (the cations on the (111)A
surface make three bonds. while on the (100) only two
surface bonds are made).

4. Conclusions

The above results demonstrate some of the complexities
encountered when dealing with the semiconductor alloys.
The vacancy formation energies are found to exhibit a
non-linear variation with alloy concentration, resulting
in larger vacancy concentrations in the alloys than
otherwise expected. Similar effects in other II-VI and
III-V alloys have been predicted (Berding, Chen and
Sher, unpublished). Surface segregation has been found




to a greater extent for the (111)A surface in HgCdTe than
in HgZnTe, indicating that HgZnTe may pose fewer
problems in the surface-related properties and processing
steps. Results from calculations currently in progress on
the (110) and (100) surfaces, and including a vapour
phase, will more fully answer the question of surface
segregation on technologically important surfaces.

Acknowledgments
This work has been supported by the National Aeronau-

tics and Space Administration under Contract NASI-
18226, by the Office of Naval Research under Contract

61

Vacancies and surface segregation in HgCdTe and HgZnTe

NOO014-85-K-0448 and by the Air Force Office of Scien-
tific Research under Contract F49620-88-K -0009.

References

Berding M A, Chen A-B and Sher A 1990 Phys. Rer. B
submitted for publication.

Berding M A, Knshnamurthy S, Sher A and Chen A-B 1987
J. Vuc. Sci. Technol. A § 3014

Buck T M 1982 Chenustry and Physics of Solid Surfaces 1V
ed. R Vanselow and R Howe (Berlin: Springer)

Harrnison W 1981 Phys. Rev. B 24 5835

Kumar V 1981 Phys. Rev. B 23 3756

Kumar V, Kumar D and Josh1 S K 1979 Phys. Rev. B 19
1954

Patrick R, Chen A-B, Sher A and Berding M A 1989 Phys.
Rer. B 39 5980

Sher A, Chen A-B, Spicer W E and Shih C K 1985 J. Fac.
Sci. Technol. A 3 105

Wilhams F L and Nason D 1974 Sur/f. Sci. 45 377

S89




Vacancy formation and extraction energies in semiconductor compounds

and alloys

M. A. Berding and A. Sher
SR International, Menlo Park, California 94025

A.-B. Chen
Auburn University, Auburn. Alabama 36849
(Received 7 May 1990; accepted for publication 2 August 1990)

Extraction energies for diamond and zinc-blende semiconductor compounds and pseudobinary
alloys are calculated using a tight-binding cluster method, where the final state of the removed
atom is in a free-atom state. The extraction energies provide a convenient reference from which

other final states of the removed atoms can be calculated. In the elemental and compound
semiconductors, the convergence of the cluster calculation was verified using a Green's
function calculation with the same Hamiltonian. For the elemental semiconductors, vacancy
(or Schottky defect) formation energies, in which the final state of the removed atom is on the
surface, have been calculated. For pseudobinary alloys of the form 4, _ B, C, we find
extraction energies to be very sensitive to the local environment, exhibiting a nonlinear
variation between the 4- and B-rich local environments; the nonlinearity is especially
pronounced for the removal of a C atom. Nonlinearities are found to arise primarily from the
occupation of localized vacancy states. The impact that these alloy variations will have on

measurable properties are discussed.

1. INTRODUCTION

Knowing the ease with which vacancies form in semi-
conductor compounds and alloys is essential to understand-
ing many properties of these materials and the way they re=
spond to device processing. For example. the deep levels
often associated with vacancies can be detrimental 1o device
performance. Unfortunately. limited experimental values
exist for the vacancy formatiorn encryies in semiconductors,
and little effort has been directed toward understanding the
variations of the vacancy formation energies in the alloys.
Interpretation of such experiments is complicated because,
in addition to the various types of vacancies possible (anion,
cation, and, in alloys, particular environments for the anion
or cation), the presence of other native defects, such as inter-
stitials, antisites, and impurities, also contribute to the mea-
sured quantities such as carrier concentrations and diffu-
sion. Thus vacancies are rarely truly isolated defects in
crystals and are influenced by the presence of other defects
and the compound stoichiometry. In addition, diffusion
measurements which have been used to deduce the vacancy
formation energy are complicated by contributions from the
migration energy, as well as by interstitial diffusion and pos-
sible diffusion paths along extended defects, such as disloca-
tions. Because of this, the magnitude of vacancy formation
energies in many semiconductor compounds is not well es-
tablished experimentally.

Many efforts have been directed at understanding the
important electronic properties of vacancies and deep states
in semiconductors.'™ Most of these calculations have fo-
cu=.d on the localized states produced by the vacancy using
cluster and slab methods.*'' Fewer models have been used
to calculate formation in semiconductors.''"'®

In this paper we present a model for the calculation of
the extraction and vacancy formation energies in diamond-
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cubic and zinc-blende semiconductors. We use a cluster
method based on Harrison's tight-binding theory.!” Harri-
son’s theory has been found to give semiquantitative agree-
ment with experiment, yielding proper trends in structure-
related properties of pure semiconductor compounds and
their alloys. The elimination of surfacelike states associated
with the cluster boundary have been addressed by including
only complete bonds in the cluster, thereby allowing atoms
with one or two hybrid orbitals missing at the cluster edge.
and then coupling the cluster states to bond orbitals outside
of the cluster by using second-order perturbation theory. We
have included in this study (1) a verification of the conver-
gence with cluster size using a2 Green's function method; (2)
an application to both the anions and cations in the com-
pound semiconductors; (3) a systematic comparison among
the various group-1V, -I11-V, and -11-V] semiconductors;
and (4) an extension to the pseudobinary alloys to study the
explicit effect of alloy composition, by directly considering
the various possible clusters of atoms about the vacancy site.
Such a detailed examination of the dependence of the extrac-
tion energy on the alioy environment cannot be easily ob-
tained in a Green's function method using an effective-medi-
um theory. Because of the difficulty associated with
correctly predicting the energy positions of the deep levels in
the gap, no attempt is made to do so here. Additionally, only
the zero-temperature, ground-state energies have been cal-
culated. Preliminary results of this work have been pub-
lished previously. '™

The remainder of this paper is organized as follows. In
Sec. II we briefly discuss the method used to calculate the
extraction and vacancy formation energies in the diamond
and zinc-blende semiconductors. The extension of this
method to the alloys is given in Sec. IIl. Results for both
compounds and alloys are presented in Sec. IV, and conclud-
ing remarks are presented in Sec. V.
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1. EAIRAC HIUN AND VACANCY FORMATION
ENERGIES IN SEMICONDUCTORS

The method we use is a tight-binding model, based on
Harrison's universal parameters’” and term values taken
from Chen and Sher.>' We begin by calculating the extrac-
tion energy, defined as the energy necessary to remove an
atom from a bulk lattice site to a free-atom state, leaving
behind anisolated bulk vacancy. The vacancy is described by
using a cluster of atoms surrounding the vacancy site. A sp’
hybrid basis is used, and atoms at the edge of the cluster are
truncated so that no dangling bonds are included. The bonds
at the cluster edge are coupled to the infinite crystal using
second-order perturbation theory. Cation- or anion-cen-
tered clusters are used for the calculation of their respective
extraction energies. Total electronic energies of a cluster,
with and without the center atom removed, are calculated
from a sum of one-electron energies, obtained from the clus-
ter diagonalization. The extraction energy is then calculated
from

E, =(E —-FE), (D
where E, is the total energy of the cluster with the center
atom removed plus the removed atom in a free-atom state,
and E, is the total energy of the cluster before the removal of
the central atom. The cluster total energies include a contri-
bution from the hybrid overlap interaction in each bond: this
overlap energy V,,, is chosen for each material so that energy
per bond for the initial cluster agrees with experiment. Con-
vergence of the extraction energies with cluster size was veri-
fied using a Green's function calculation.”™ in which the va-
cancy is simulated by setting the term values at the vacancy
site to infinity.

Several additional contributions to £ were also esti-
mated. First, the charge redistribution that occurs when an
atom is removed from the cluster produces a shift in both the
Madelung energy AK and the on-site Coulomb energy AU.
The calculation of these energies is discussed in Appendix A.
Second. the atoms about the vacancy site may move from
their ideal lattice positions as a result of the formation of a
vacancy. relaxing into the minimum energy configuration.
The calculation of the energy resulting from radial relaxa-
tion about the vacancy site is given in Appendix B. Finally,
the second-neighbor interaction of the dangling hybrids at
the vacancy site and the related Jahn-Teller distortion can
lower the vacancy formation energy. An estimate of this cor-
rection is given in Appendix C.

Vacancy formation or Schottky defect formation ener-
gies are calculated from, in the elemental semiconductors,

E.=E, —F_, (2)
or in compound semiconductors as
E'=£(E‘; +E'1 ) —E\uh‘ (3)

where E_, 1s the bulk cohesive energy per atom. Equation
(2) corresponds to the removal of an atom from a bulk site to
a surface, leaving a bulk vacancy behind, and thereby in-
creasing the number of sites of the solid by one while leaving
the nature of the surface effectively unchanged. For the com-
pound semiconductors, Eq. (3) corresponds to the creation
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of an unbound cation-anion vacancy pair and the addition of
a unit cell to the crystal, here normalized per atom. We can-
not consider the surface to be unchanged after the removal of
only an anion or cation from the bulk to the surface, because
in doing so the surface stoichiometry, by necessity, will be
changed. Another way to visualize this is to realize that the
cohesive energy appearing in Eq. (2) can only be defined per
cation-anion pair in a compound, and the cohesive energy
per anion oOr per cation alone cannot be generally defined.
Thus, in compound semiconductors, additional informa-
tion, such as stoichiometry and other dominant defects.
must be supplied to calculate the vacancy concentration.
Hence, while energies £+’ = E<'*' — E_, can be algebrai-
cally defined, they are not generally physically meaningful in
the sense that they correspond to a specific event, nor will
they alone in statistical equations predict measurable quanti-
ties. For similar reasons, the Schottky defect formation ener-
gies in the alloys are not rigorously defined.

. EXTRACTION ENERGIES IN ALLOYS

Extraction energies in the pseudobinary semiconductor
alloys are calculated in a manner similar to the elemental
and compound semiconductors. Beyond the cation and an-
ion, there are two distinct classes of vacancies which we must
consider: the removal of an atom of the common species and
the removal of an atom of the substituted species. Below, we
briefly discuss the calculations for these two classes.

We begin by discussing the extraction energy for an
atom of the common species, 1.e., a Catom in the pseudobin-
ary alloy 4, B, C, where Ccan be either a cation or anion.
Consider the four first-neighbor positions occupied by
(4 — n} 4 atoms and n B atoms, where n = 0—4. Because of
the tetrahedral symmetry, there i1s only one unique arrange-
ment for the (4 — n) 4 and n B atoms. Because the number
of possible arrangements of 4 and B atoms in the third-shell
neighbor sites and beyond is large. and because we expect the
primary effects of alloying on the extraction energy to have a
short range, we use a virtual crystal average (VCA) for the
medium bevond the second shell.

For an alloy of a given concentration x, the average
bond lengths of the 4C and B8C bonds in the alloys have been
shown to be well represented by™*

dl(‘=d(;L'+x( ‘;(“d‘z(')/“’v (4a)
and

3}
BC

dpe =d e = (1~ x)(d5c —dc)/4, (4b)
where d",- and d ', are the bond lengths of the constituent
compounds. This is also in excellent agreement with ex-
tended x-ray absorption fine-structure (EXAFS) expen-
ment. Because in a random alloy the deviation of the bond
lengths in various classes of clusters about this value is
small,”® we have used bond lengths calculated from Eq. (4)
for all classes of clusters (i.e., values of n). Because the
breathing-mode lattice relaxation about the vacancy site was
found to be small for elemental and compound semiconduc-
tors (see Sec. ['V), lattice relaxation about the vacancy in the
alloys has been ignored.

For a given bulk concentration x, the extraction energy
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ofaCatomfromaAd, ,B, cluster, E¢ (x.n). is calculated
by taking the difference between the final- and initial-state
cluster energies with the same configuration of 4 and B
atoms. In a random alloy 4, | B, C, the average extraction
energy of a C atom is given by

4
EC(x)= 5 PE (xm), (5)
TNy
where P, is the random probability of a cluster with n B
atoms, given by
Pnzp”xu(l_x)cl—u‘ (6)

and where p, is the binomial coefficient

4
P,.=( ) (7
n

The above expression for £ (x) can be readily extended to
include nonrandom cluster distributions by replacing P,
with the appropriate nonrandom probabilities. Note that it is
the particular values of E_ {x,n) which enter into the calcu-
lation of many physical properties, not the average calculat-
ed in Eq. (5), as shall be discussed below.

We now consider a Bvacancy inthealloyd, B C. To
include specific alloy arrangements, one must consider the
G, unique ways of arranging (12 — n) 4 atoms and n B
atoms in the second-nearest-neighbor positions, where
n = 0-12. Because of couplings 10 other second-neighbor
sites through the third-neighbor atoms. all second-neighbor
sites are not equivalent, and in general G, is large. Thus we
approximate by assuming the cluster is a Bethe lattice, there-
by decreasing the connectivity of the lattice and subsequent-
Iy the number of unique arrangements to G ,. Because the
number of possible arrangements of 4 and B atoms in the
fourth-neighbor sites and beyond is large, and because the
detailed arrangement of the atoms in these positions should
not significantly affect the extraction energy, a VCA average
beyond the third shell is used.

The extraction energy, E "(x.n.g,). for each arrange-
ment g, of n B atoms and (12 — n) A atoms in the second-
neighbor positions is computed by taking the difference
between the initial- and final-state cluster energies. The aver-
age extraction energy for a given concentration x 1§ ex-
pressed by
G
z P, Et(x.ng,)

!

K.

+ Eyne (x), (8)

where P, is the random probability of a ~luster with n A4
atoms, given by

P,, =p,,x"(| _X)II n‘ (9)

E'x)= :X_: P,

and p, is the binomial coefficient

()

P, is the probability of the g} particular arrangement of
(12 — n) A atoms and n B atoms in the second-neighbor
sites of the cluster. Because it is well known that the proper-
ties of solids are poorly represented by approximations such

as the Bethe tree, we do not focus on the quantitative values

(10)
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in presenung the results for a vacancy for the alloys, but
rather on the overall trends observed. A correction
E,.. (x)is added 1o the values calculated using the Bethe
approximation 10 produce agreement with the non-Bethe re-
sults for the compounds. The correction in the alloy s calcu-
lated by first computing it for the pure compounds. AC and
BC.eg. E .. = E ' (2zincblende) — E ' (Bethe latuce),
using the same cluster size, then interpolating to calculate
the correction in the alloy, via £, (x) = (1 = x)E3,.
+ (x)E ... This correction is typically <0.3 eV. As
above, these expressions can be readily extended to include
nonrandom cluster distributions.

IV.RESULTS
A. Extraction energies

Extraction energies E  for anions and cations in the
group-1V, -111-V, and -1I-VI semiconductors were calculat-
ed for cluster sizes from 13 to §9 atoms and compared with
the results of a Green's function caiculation using the same
matrix elements. Convergence to the Green's function val-
ues for the cation vacancies was better than for the anion
vacancies. This was found to be due to the differences in the
nature of the states associated with the dangling hybnds at
the vacancy site. The localized states at the cation vacancy
site anse primarily from the anion dangling hybnds, while
the states at the anion vacancy site arise primarily from the
cation dangling hybrids. The anion hybnid-derived states are
more valence band like and thus more localized: in contrast
the cation hybrid-derived states are more conduction band
like and more delocalized; thus finite cluster effects are more
important. Calculated extraction energies using the Green's
function are given in Table 1. Also shown for comparison are

TABLE | Extraction and vacancy formation energies for zinc-blende semi-
conductors. The vacancy formaton energy for the compounds are normal-
ized per atom. Also shown for comparison are the cohesive energy per atom
in the ideal vohds.

Compound E ., —eV E' —eV E* —eV E —eV
C 7.36 19.2 19.2 119
S 4.64 10.3 10.3 57
Ge 388 8.1 81 42
Sn ER P 6.3 6.3 32
AP 4.26 10.6 111 [ X

GaP 356 83 88 50
InP 348 8.2 L% 5.1
AlAs 178 28 a6 54
GaAs 3.26 6.7 7R 4.0
InAs 3.10 6.8 7.5 40
AlSb 2.40 47 6.1 30
GaSb 2.96 5.9 6.8 34
InSb 2.80 60 6.3 33
ZnS 318 6.9 10.0 5.3
CdS 2.84 6.1 8.8 4.6
HgS 2.04 4.5 7. 4.1
ZnSe 2.58 5.7 8.7 46
CdSe 2.42 50 7.8 40
HgSe 1.70 34 6.8 34
ZnTe 240 51 8.1 42
CdTe 2.20 47 7.4 3R
HgTe 1.64 31 6.4 31
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the cohesive energies of the ideal solids. We see that estimat-
ed errors attributable to the cluster approximation are 0.1
eV for the cation vacancies and $0.5eV for the anion vacan-
cies. Similar errors are expected in the alloy cluster calcula-
tions.

Although the major contribuuon to £, 1s from break-
ing four bonds at the vacancy site. there are additional terms
that contribute to £, and that differ for the cation and anion
vacancies. These differences can be attributed to several
sources. First, when an anion is removed from the solid, the
electrons on the removed anion are depromoted from the sp'
hybrids. while the electrons on the four cations adjacent to
vacancy remain in excited hybnd states; when a cation is
removed. it is the caticn electrons that are depromoted from
the hybrids, while the anion orbitals remain hybridized. Be-
cause the bond-breaking term 2E_, ts referenced to the free
cation and anion, the energy of the electrons which remain
promoted to sp' hybrids must be included explicitly. This
contribution to E | is larger for the cation vacancy because
both the number of electrons and the promotion energy per
electron is greater for the four anions at the vacancy site. A
second difference in £ arises from metallization-induced"’
shifts in the dangling hybrid energies. This shift is upward
for the anion hybrids and downward for the cation hybnds,
yielding net positive (negative) contribution to E | for the
cation (anion) vacancy. Finally, a third difference in £
arises from back-bond cnergy shifts which result from the
cation (anion) dangling hybrids at the anion (cation) va-
cancy site coupling to adjacent unbroken bonds and anti-
bonds in the latice. Resulting shifts from this source are
large and negative for the cation vacancy because of the larg-
er magnitude of the coupling V', . and the deeper energy and
resulting stronger couphing of the anion dangling hybnd
state, with respect to the cation states at the anion vacancy
site.

The contribution from relaxation and Coulomb energies
to both anion and cation extraction energies are comparable
and small. The nearest-neighbor atoms are found to relax
away from the vacancy site when a cation is removed, while
they relax toward the vacancy site when an anion vacancy is
created. For both cation and anion vacancies, calculated
bond-length shifts are small. with the first-neighbor bond
lengths shifting by less than 29%. The breathing-mode relax-
ation at a vacancy site has often been assumed to be similar to
the relaxation occurring at a (111) surface””** where the
atoms are found to move toward the bulk, shortening the
bond fengths of nearest-neighbor bonds by 8%-15%. In
contrast to some previous work, we find that the bond-
length and energy shifts in the relaxed cluster are small com-
pared to the accuracy of the model; inclusion of relaxation in
the calculation of E. and E, is not important. The Jahn-
Teller energy E,, resulting from the direct interaction of the
dangling hybrids has been estimated (see Appendix C), and
energies of the order of — 0.6 eV are obtained.

B. Schottky defects

From the extraction energies and Eqs. (2) and (3)
above, Schottky defect formation energies were calculated
and are given in Table [. As discussed above, in the com-
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pounds the Schottky defect formation energy E, is physical-
ly mea.ingful only for a cation-anion (bound or unbound)
vacancy pair, since the creation of a new unit cell by bringing
atoms to the surface requires creation of two lattice sites. A
comparison of £ with the cohesive energy 1s showninFig. 1.
We find, as expected, that the £, increases with increasing
cohesive energy, and that the group-1V, -111-V, and -11-V1
compounds fall into groups that each vary nearly linearly
with the cohesive energy, but that have different slopes and
initial values. Also, for a given cohesive energy, E, 1s larger
for the more ionic materials. Compensation effects, which
are expected to be largest in the wide-gap 1onic matenals, are
not included in this calculation. Observed trends may be
modified by the inclusion of this effect. Also shown in this
figure is the quantity £’ — E_,, for the compound semi-
conductors, to illustrate the varation of extraction energy
with cohesive energy. The difference in this energy between
the anion and cation is larger for the more ionic, group-11-V1
compound, as expected. We also find £, < £, consistent
with the observations of measured extraction energies 1n
CdS and CdTe. ™"

The vacancy concentration can be found by minimizing
the change in the Gibb's free energy AG between the pure
bulk crystal and the crystal containing n vacancies. For non-
interacting vacancies. the Gibbs free energy 1s given by

AG = nE, — TS (n) + F(n,T), (1

where T is the temperature and S """ (n) is the configura-
tional entropy of the n vacancies. F(n,T) accounts for free-
energy changes from the modification of the phonon fre-
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F1G. 1. Comparison of the Schottky defect formation energy (normalized
per atom) and the cohesive energy. Squares are the group-1V elements, sol-
id circles are group-111-V compounds, and open circles are group-11-VI
compounds. Dashed lines represent the least-squares fit through each series
of compounds, where, for the group-1V elements. carbon (not shown) has
been included in the fit. Upper (lower) X's represent the quantity
£ — F_, for a given compound.
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quencies because of the presence of n vacancies, as well as
additional free-energy changes, such as entropy associated
with the Jahn-Teller distortion at the vacancy sites. The case
most often treated in textbooks'' " is where the number of
surface sites is ignored in the counting of the entropy. The

number of vacancies # is given by "' as

n=77Ne""/“. (12)
where
-1 (9F(n.T))
= _— (13)
7 ”p( AT on

and n is the number of sites for the vacancy. If the change in
the surface is included explicitly in the calculation of the
Schottky defect formation energy, one must include the
complete information about the surface. Simply including
the entropy of the vacancy atoms removed to the surface in
the Bragg-Williams approximation, assuming a perfectly
flat surface when there are zero vacancies (see, for example,
Landsberg and Canagaratna),’ is not sufficient. A full ac-
count of the nature of the surface, to include the atom/sur-
face-vacancy distributions,* the appropriate entropy, mul-
tiple surface layers. and even surface reconstruction, is nec-
essary so that the true surface-bulk equilibrium can be de-
scribed. Because the problem can be decoupled into two
equil:bnia, i.e., the surface with the ideal bulk and the vacan-
cies with the ideal bulk, the equilibrium vacancy concentra-
tion can be expressed by Eq. (12) in most cases.

Because of the difficulty of measuring the vacancy for-
mation energy, only a limited number of values exists in the
literature. Even for silicon. the most studied of the semicon-
ductors, the value for the vacancy formation enthalpy is not
firmly established, because of the complication of diffusion
experiments by the possibility of multiple simultaneous dif-
fusion processes such as vacancies and interstitials. High-
temperature diffusion in Si is found to follow a typical Arr-
henius behavior, with measured activation energy of 4-6
eV." The activation energy in diffusion E,, is given by the
sum nf the vacancy formation energy £, and the migration
energy E,,. Migration energies measured by Watkins'® are
of the order of 0.25 eV. Combining our vacancy formation
energy with the measured migration energies, we find £, =6
eV, consistent with the measured activation energies. Qur
results are also in excellent agreement with local density,
pseudopotential, Green’s function calculations of Car er
al.'* Note that both the present results and those of Car er al.
are approximately twice the value of E, from earlier esti-
mates.'*’

The extraction energies are more difficult to measure in
the semiconductor compounds because of the presence of
two classes of defects on the cation and anion sublattice. In
the annealing experiments typically done, assumptions
about which native defects are dominant must be inferred
from the experiments, and additionally, much of the analysis
must employ values of the donor or acceptor levels of the
vacancies, which are in themselves not conclusively identi-
fied in most compounds. The extraction energies in a num-
ber of I1-VI compounds have been deduced from annealing
experiments, characterized by Hall measurements. Ray and
Kroger™ have measured the Zn extraction energy for ZnSe
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as £°" = 4.6 eV, which compares to our calculated value of
E, =57eV.InCdS, Kumar and Kroger"' have measured
ES$Y=4.0eVand £ = 7.3¢V compared to our calculated
valuesof E$* = 6.1eVand E> = §.8eV. In CdTe, Chern.
Vydyanath, and Kroger™ have measured E<° = 4.7 ¢V and
ET =60 eV compared to our calculated values of
E<“=47eVand E' =74 ¢V Finally, in Hg, .Cd Te
(x = 0.2), Vydyanath" measures £'"% = 2.2 eV, while we
find E*® = 1.6 eV. Note that in general our calculated val-
ues are larger than the measured values, although for the
cation vacancy in CdTe our agreement with the measured
values 1s quite good. We do find that E*"" > E<**™, consis-
tent with experiment. Because of possible contribution from
compensation effects, for which one must know about the
localized levels in the gap, care must be exercised when com-
paring our results directly with the measured Schottky de-
fect formation energies, in order to ensure that the experi-
mental situation approximates the initial and final states
treated in our calculations.

Baraff and Schluter'* have calculated the total energies
for the cation and anion vacancies in GaAs using a pseudo-
potential Green’s function calculation within the local den-
sity approximation. We compare our results with their value
for the Schottky defect energy, E¢*** = 3.35 eV/atom.
where both vacancies are neutral.*’ The corresponding val-
ues from the present work is E%*** = 4.0 eV. Jansen and
Sankey'® have also calculated the vacancy formation ener-
gies for several compounds using an ab initio pseudo-atomic-
orbital method. Our calculated energies are in good agree-
ment with their values. They calculate formation energies of
4.8, 4.25, 4.3, and 3.7 eV in GaP, GaAs, ZnSe, and ZnTe.
respectively. These compare to our values of 5.0. 4.0. 4.6,
and 4.2 eV for the same compounds. As in the comparison
with experiment. we find that the present tight-binding mod-
el in general yields energy values which are higher than the
ab initio values.

C. li-VI pseudobinary alloys

While the cluster approximation is expected tc intro-
duce some error in the calculated extraction energies. as not-
ed above, the results presented here emphasize the relative
energies of different local clusters in the alloys, and hence the
cluster ~alculation should not change our major conclu-
sions. Corrections from Jahn-Teller distortion und Cou-
lomb energies have not been included in this alloy study.

1. Common anion alloys

We begin by examining in detail the extraction energies
in one II-VI common anion alloy. The Te common anion
alloy system has been chosen as an example because of the
technological importance of these alloys. HgCdTe and
HgZnTe are both narrow-gap alloys in the Hg-rich concen-
trations with infrared device applications, and CdZnTe is
often employed as a substrate material for HgCdTe and
HgZnTe. Additionally, the alloy variation of E_ in this sys-
tem is representative of the behavior found in other alloy
systems.

Cation and anion extraction energies in the Te common
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are shown in Fig. 2 as a function of the near-neighbor com-
position. These and the following alloy results are for clus-
ters with 53 atoms. For the Te anion vacancy, the five near-
neighbor arrangements are individually unique and
correspond to the values shown in Fig. 2. The values for the
Zn, Cd, and Hg cation extraction energies in Fig. 2 corre-
spond to an average over the unique arrangements of atoms
in the second-neighbor positions, as shown explicitly in Fig.
3. The random-probability-weighted average extraction en-
ergy as a function of composition x is shown as the solid line
in Fig. 4, with the rms deviations shown as dashed lines.
First, we discuss the anion extraction energies in the
CdHgTe alloy. shown in the center panel in Fig. 2. In
CdHgTe, the dependence of the Te extraction energy on n,
the number of Hg atoms in the first-neighbor sites, is easily
understood within the context of Harrison’s bond-orbital
model.'” Although results are interpreted using bond-orbi-
tal model concepts, the results presented are those from a full
cluster calculation. There are two primary contributions to
the extraction energy which dominate the overall depend-
ence of £ on n. The first contribution to £ | accounts for a
gradual increase in E | in going from the Cd, Hg, tothe Hg,
cluster and is due primarily to the differences in the bonding
energy e, (Ref. 17) of the four bonds which are broken upon
vacancy formation. Since the bonding energy level of the
HgTe bond is lower than for the CdTe bond, ie,
el¥ T < e5MT because of the deeper s and p states on the Hg
compared to Cd. this contribution to the E | will resuitin an
increase with an increase in the number of Hg cations adja-
cent to the vacancy site. The breaking of the four bonds also
results in regaining the repulsive bond energy V,,, which is
smaller for the slightly shorter bond-length compound
CdTe. This contribution to £ will produce a decrease in
E | with the increasing number of HgTe bonds broken, but
the magnitude is small because of the nearly equal lengths of
the CdTe and HgTe bonds. The net result of both these
bond-breaking contributions to £ is to produce an increase
in £, with an increasing number of Hg atoms adjacent to
the vacancy, as seen in Fig. 2. The second contributionto £,
that dominates the » dependence is related to the energy of
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FIG. 2. Extraction energies in the Te common anion alloys as a function of
near-neighbor configuration for bulk concentration x = 0.5. In Figs. 2 and
3-14, the solid line corresponds 1o the average extraction energies and the
dashed hines to the rms deviations

5069 J. Appl. Phys., Vol. 68. No. 10, 15 November 1990

67

. -

(C) L X ]
~ 4 .2 cd :
)
CRY ) ar . Y
LT YRS . .
o L |
e6r 39 r 'T-\\( 3 !
.
§ |
'50 4 1§12 3‘(} b < t T 42 W

nZnyz..CdaTe N Rgsz-.2n.Te

E. (ev)

FIG. 3. Canion extraction energy in Te common anion alloys plotted for the
unique configurations of second-nearest-neighbor cations, for bulk concen-
tration x = 0.5. The open circles correspond to the extraction energies of
unique configurations; the filled circles correspond to the probabiiity-
weighted average

the electrons in the dangling hybrid levels. When a Te atom
is removed from CdHgTe, the six outer-shell anion electrons
are removed with the neutral Te atom, to leave two electrons
in the four cation dangling hybrids. The energy levels that
these electrons occupy depend on the cation species which
are adjacent to the vacancy site. The atomic sp* hybrid ener-
gy of Hg is lower than that of Cd, €* <€} (€ is used
throughout to refer to the free atomic values, and e 1s used to
refer to the calculated cluster values). As expected, a similar
relationship is found between the calculated dangling hybnd
energies at the vacancy site, where we have e!'* < e$. Thus. if
at least one Hg atom is adjacent to the vacancy site, the two
electrons will occupy the lower-energy Hg dangling hybrid
level, and their contribution to the extraction energy will be
approximately constant. For the Cd, cluster. the two elec-
trons must occupy the higher-energy Cd dangling hybrid
orbitals; this accounts for the relatively large jump in the
extraction energy in going from the Cd, to Cd,Hg, cluster
in CdHgTe, as seen in Fig. 2.

A similar interpretation follows for the anion extraction
energy in HgZnTe, shown in the third panel of Fig. 2. For the
HgZnTe system, we have 2" > e}’¥, thus the two electrons
which occupy the dangling hybrids will occupy the lower-
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F1G. 4. Extraction energies in the Te common anion alloys as a function of
composition X.
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lying Hg levels. For the Hg, ,Hg.Zn, Hg,Zn,, and Hg, Zn,
clusters, this contribution to E_ is nearly constant and it
abruptly increases for the Zn, cluster, as 1s observed in Fig.
2. The other primary contributions to £, come from the
bonding energy and repulsive energy of the bond breaking.
These two contributions produce opposite slopes of compar-
able magnitude between the Hg, and Zn, clusters, resulting
in E_ (x,n) nearly independent of n. Finally, for the Te va-
cancy in ZnCdTe, shown in the first panel of Fig. 2, the
dependence of the contribution to £_ from the electrons in
the dangling hybrids on the number of Zn and Cd atoms
adjacent to the vacancy site is not as important asin CdHgTe
and HgZnTe, because the difference in the danghng hybnd

energies 2" and ¢5", is small. For the bonding energy contri-
bution to E_, we find e]"" < e$*" and V" s VLT re-

sulting in a net decrease in £ with an increasing number of
CdTe bonds.

As noted above, the cation extraction energies in Fig. 2
represent an average over the unique configuration of
cations in the second-neighbor shell. £ for the unique sec-
ond-neighbor cation configurations are shown in Fig. 3. The
regular structure observed in Fig. 3 isin part due to the use of
a Bethe lattice and the additional degeneracies it superposes
on the lattice. The variations in £ arises from shifts in the
energy of the four broken bonds and the vacancy localized
states through interaction with the second-neighbor alloy
bonds. For a true zinc-blende lattice, we expect a smaller
dispersion about the average value shown in Fig. 3.

The overall dependence of the anion extraction energy
on x, shown in Fig. 4, follows the same general trends as in
Fig. 2. In CdHgTe and HgZnTe, the downward bowing of
E_ (n) results in a downward bowing in E | (x). Also. the
comparatively large variation of the Te extraction energy
relative to changes in the near-neighbor environment results
in a large rms deviation, particularly for the Cd-rich compo-
sitions of CdHgTe and Zn-rich compositions of HgZnTe.
For the cation vacancy, the variation of the extraction ener-
gy with cluster composition is of smaller magnitude than for
the anion vacancy, thus resulting in a relatively small rms
deviation, altliough the downward bowing of the cation va-
cancy plot as a function of n results in a small downward
bowing in the x-dependent function.

For the anion extraction energy in all of the common
anion I1-VI alloys, the break from linearity of the extraction
energy versus cluster composition n always occurs at the
n = 1 or 3 cluster, as was observed for the Te system in Fig.
2. This 1s because the two electrons which occupy the dan-
gling hybrids will always occupy the lowest available hybrid
level. For an alloy 4, _, B, C, where e, > e} these two elec-
trons will occupy a B dangling hybrid, except in the n = 0
cluster where no B atoms are present, resulting in an abrupt
increase in E_ . Because this break from linearity is mostly
related to the cation hybrid energy only, one notes that if the
break from linearity occurs, for example, at n =1 for
A,_,B,C, it will also occur at n =1 forall 4,_,B,D al-
loys, as is observed by comparing Figs. 2, 5, and 6. This break
in linearity of the curves can be predicted, since €}'¢ < €5",
€l® < €2", and €2" =€5". Additionally, the sign of the slopes
can be predicted within the simple bond-orbital model by
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comparing the major alloy-dependent contribution. £,
= B¢, + 4V, for the different systems. The bond-orbual
model predicts E4N > EM¥Y S EL N for X = S, Se. and Te.
This is in agreement with the sign of the slopes calculated
within the cluster calculation and shown in Figs. 2. 5. and 6.
Although the bond-orbital model 1s sufficient to predict the
general trends observed, the magnitudes of the slopes must
be det>rmined from the cluster calculation, which includes,
for example, the back-branch metallization effects not calcu-
lated in the simple hund-orbital analysis above.

As was found for the Te common anion alloy, the aver-
age cation extraction energies in other I1-VI alloys vary
nearly linearly with the cation concentration in the second-
nearest-neighbor shell. The cation extraction energies in the
I1-V1 alloys vary, depending on the particular arrangement
of atoms in the second-shell sites, as was shown for Te in Fig.
3. Although these values for each alloy system are not
shown, a measure of the vaniation i1s shown in the rms devia-
tions in the plots of E (n).

2. Common cation alloys

The structure in the cation extraction energy versus n
curves for the I11-VI common cation alloys, Figs. 7-9, can be
interpreted in 2 manner similar to the anion extraction in the
11-V1 common anion alloys. From the bond-orbital model,
we find EX5> E N> > EXY for X = Zn. Cd. and Hg. Thus
we expect this contribution to £ will increase linearly for
increasing number of S atoms in the XS, ,Se, and
XTe, S, clusters, and will increase linearly with increas-
ing Se atoms in XSe, ,Te, clusters. The second contribu-
tion that dominates the n-dependent behavior of E | is that
of the energy of the six electrons in the dangling hybrids.
From the atomic term values, we find €)* > €, > €, ; thus we
would predict that the electrons will occupy, in order of pre-
ference (lowest energy first) S. Se. then Te hybrids, as 1s
observed from the results of the cluster calculations. For
example, £ for the cluster XS, |, Se, can be expressed as

E, =C,+C/n+ae + fer, (14)

where C,, + C, n includes the composition independent and
E,. (nearly linear) terms, and a = 6. £ =0, for n =0.1;
a=4F=2forn=2;a=2F=4forn=3anda =0,

i
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FIG. 5. Extraction energies in the S common anion alloys as a function of
near-neighbor configuration for bulk concentration of x = 0.5.
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FIG. 6. Extraction energies in the Se common anion alloys as a function of
near-neighbor configuration for bulk concentration of x = 0.5.

B = 6, for n = 4. Note that between n = O and 1, the slope of
E _ versus nis determined by the variation of E,, with n. For
n = 1-4, the slope is a sum of the E,, contribution plus a
contribution from the electrons in the dangling hybrids.
Consider the Zn vacancy inZnS, _ ,Se,. The C, + C,ncon-
tribution to E_ will decrease with increasing n because

&S 5 EZ'¢ This slope can be seen between n =0and | in
Fig. 7. The electrons in the dangling hybrids will produce an
increasing contribution to E, with increasing n because
€, <€°. The sum of the C, + C, n, term (positive slope)
plus the energy from the electrons in the dangling hybrids
(negative slope between n = 1 and 4)yields a net negative
slope for n = 1-4. A similar analysis follows for the cation
vacancy in other 1I-VI common cation alloys. Once again,
the general shape and sign of the slopes of the £, curves can
thus be predicted, based on the bond-orbital analysis, al-
though the more detailed cluster caiculation is needed for a
quantitative description.

The average anion vacancy in these alloys varies nearly
linearly with n as expected, because the alloy dependence
enters in the second-neighbor sites. A measure of the extrac-
tion energies sensitivity to the detailed arrangement in the
second-neighbor sites can be gathered from the rms devia-
tions indicated in the dashed lines in Figs. 7-9.
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FIG. 7. Extraction energies in the Zn common cation alloys as a function of
near-neighbor configuration for bulk concentration of x = 0.5.

5071 J. App!. Phys., Vol. 68, No. 10, 15 November 1990

69

0.0 4ad€a n.CaSesale. n.CaTes.S.
y o33 1 i3 LI S |
[ et +—t— e dp—y-
113 s : 5
14 Se ]
Se Te
43 Te
2 6
~ Ca
¢ st
- NS Ce
o
3
st
SN — , N
24 6 81 T Tt o2
n:CdSiz..5e, n:CaSe,;_.Te. n:CdTe,3-aSn

FIG. 8. Extraction energies in the Cd common cation alloys as a function of
near-neighbor configuration for bulk concentration of x = 0.5.

D. lll-V pseudobinary alioys
1. Common anion alloys

For anion extraction energies in the 11I-V common an-
ion alloys shown in Figs. 1012, the analysis is similar to that
in the II-VI alloys. As above, we use atomic term values and
the bond-orbital model to interpret our results. We first note
that €J“ <€)’ <€) and EN* < ENN < EG* for X = P, As,
and Sb. The analysis is as follows, using the P vacancy in
Ga, ,In, P (center panel of Fig. 10) as an example. Be-
cause E" < E$*Y, this energy produces a linear contribu-
tion to £, with negative slope, as shown. The three elec-
trons at the vacancy site will preferentially occupy the
lower-energy Ga hybrid states. Thus E_ can be written as

E, =C, +C.n+ael + fe", (15)

wherea =3, 8=0,forn=0-2, a=2,8=1, forn=3;
and a =0, B = 3, for n = 4. Thus, for n = 0-2, the slope of
E, vs n will be negative, dominated by the back-branch
energy dependence on n. For n = 3 and 4, the three electrons
occupying the dangling hybrid levels contribute an energy to
E, which increases with increasing n.

A similar analysis follows for the other I1I-V common
anion alloys. With one exception, the behavior of £ vs n
follows the simple bond-arbital analysis presented above.
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FIG. 9. Extraction energies in the Hg common cation alloys as a function of
near-neighbor configuration for bulk concentration of x = 0.5.
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FIG. 10. Extraction energies in the P common amon alloys as a function of
near-neighbor configuration for bulk concentration of x = 0.5.

The exception is the In, _ , Al, X alloys, for X = P, As, and
Sb. Here the atomic term values suggest that the Al hybnid

tn

levels are of lower energy than the In hybrid levels, €)' <€),
while the cluster calculations find the opposite, i.e., e}’ > e},
The reasons for this reversal are related to the coupling of the
dangling hybrids at the vacancy site to bonds in the rest of
the cluster, which has been included in the cluster diagonali-
zation; this can result in a significant energy shift of the dan-
gling hybrid levels. We have found that for most systems,
this shift does not alter the relative order of the hybrid energy
levels.

An analysis of the cation extraction energies follows
that presented for the I1-VI Te alloy above. As was found for
the 11-VI common anion alloys, the cation extraction ener-
gies are not as sensitive to the environment as are the anion
extraction energies, because the effects of alloying come in
the second-neighbor sites. The rms deviations indicated as
dashed lines in Figs. 10-12 provide an indication of this sen-
sitivity.

2. Common cation alloys

For cation extraction energy in the III-V common ca-
tion alloys shown in Figs. 13-15, the analysis is similar to
that in the II-VI alloys. Using the atomic term values and
bond-orbital model to interpret the results, we first note that
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FIG. 11. Extraction energies in the As common anion alloys as a function of
near-neighbor configuration for bulk concentration of x = 0.5.
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FIG. 12. Extraction energies in the Sb common anion allovs as a function of
near-neighbor configuration for bulk concentration of x = 0.5

€ <€y <€ and EXSC < EX < EX' for X = Al Ga, and
In. The analysis i1s as follows, using the Ga vacancy in

GaAs, . ,Sb,, as shown in the center panel of Fig. 14. Be-
cause E *5" < E 5**, this energy produces a linear contribu-

tion to £ with a negative slope versus n. The five electrons
at the vacancy site will preferentially occupy the lower-ener-
gy As hybrid states. Thus £ can be written as

E, =C,+C/n+ac) + Be), (16)

wherea=5 =0, forn=01a=4 =1 forn=2;
a=2pB=3forn=23anda=0,8=S5,forn =4. Thus,
for n = 0-1, the slope of E, vs n will be negative, dominated
by the dependence of E,, on n. Forn = 24, E, will havea
decreasing (with 1) contribution from C, n and an increas-
ing contribution from the electrons in the dangling hybrids.
The increase in energy occurs because the five electrons at
the vacancy site occupy the higher-energy Sb hybrid levels.
Thus the slope will be nearly linear between n = 2 and 4,
because of the linear increase from the electrons in the dan-
gling hybrid levels. Again, a similar analysis follows for the
other I1I-V common cation alloys. All of the I11-V common
cation alloys follow the qualitative behavior predicted by the
atomic term values €, and the bond-orbital-model results.
And, as expected. the average anion extraction energies are
found to vary nearly linearly with n.
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FIG. 13. Extraction energies in the Al common cation alloys as a function of
near-neighbor configuration for bulk concentration of x = 0.5.
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E. Consequences of alloy variation of £ _

The predicted nonlinear variation of common-species
extraction energies in alloys will have an important impact
on the calculation of vacancy densities in these materials. In
particular, the presence of a minimum in E_ implies larger
vacancy concentrations than a simple linear variation would
predict. To demonstrate this, we choose for an example the
Te vacancy in the Te common anion alloys. As discussed in
Sec. 111 B above, the definition of the Schottky defect forma-
tion energy of the individual constituents in the compounds
and alloys is not rigorously defined, and as a consequence,
the calculation of the vacancy concentration in these materi-
als requires additional information about the system, e.g.,
stoichiometry and external phases. To demonstrate the ef-
fect that the nonlinear variation in £ can have on proper-
ties such as the vacancy concentration, we calculate a some-
what fictitious quantity 7, as defined below. This quantity
has no direct significance, but does demonstrate the impact
that a nonlinear variation in £, can have on measurable
properties. We begin by defining n1(x,n), which is related
to the Te vacancy density for a given class of cluster , in the
alloy of compasition x, as follows:

nl(x.n) = p{x,n)N,P, exp[ — E, (x,n)/kT ], (17)

where k i1s Boltzmann's constant, T is the temperature in

n:InP,_.As, n.inAs,_.Sba. n:inSba_aPa
16 1 2 h] Al i S 1 3 3
$ m— —————t T —F

£ (eV)

Kelvin, N, is the anion site density, P, is the random proba-
bility factor, given by Eq. (6), and 7(x,n) is as defined in Eq.
(13). Note that we have used the calculated zero-tempera-
ture value of £ ; more properly, the finite-temperature val-
ue, including the effect of the Fermi level, should be used
here. Summing over all classes of clusters, we find

n[(x) =3 nl*(x,n), (18)
and normalizing to n"* for pure CdTe, we find
nl(x)

n'<(CdTe)

al(x)

= (a;‘”“ ) exp{ [£(CdTe)

— E(x)]/kT}, (19)

where we have assumed all #'s are equal. g, is the lattice
constant of CdTe and a, is the volume-averaged lattice con-
stant for the alloy of composition x. Values of #/(x) are
shown in Fig. 16 for T = 800 K. Shown for comparison are
the calculated values based on extraction energies and as-
suming a simple linear interpolation between then = Oand 4
clusters of Fig. 2. The difference between the linear-interpo-
lated values and the calculated values is quite dramatic, espe-
cially in the CdHgTe alloy where #"(x) differ by as much as
five orders of magnitude; the difference will be smaller in
calculations for which the final states on the surface are con-
sidered, and thus an energy related to E_,, is subtracted from
E , . Note that because of the minimum in £, the vacancy
concentration for some composition in the alloy is found to
be greater than in the constituent compounds. For the par-
ticular case of HgCdTe (center panel of Fig. 16), the differ-
ence between 7 for the linear and nonlinear £ | is greatest for
the Cd-rich alloys. We thus predict that even a small addi-
tion of HgTe to CdTe may result in a significant enhance-
ment in the vacancy density in the resulting alloy, compared
to that in pure CdTe. Similar results are expected for other
alloys.

Next we consider the cation vacancies in the Te com-
mon anion alloys. Analogous to Eq. (18) above, we calcu-
late
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FIG. 16. Te common anion alloys using the calculated Te extraction ener-
gies from Fig. 2 (solid line) and linearly interpolated extraction energy
bused on the x = O und 1 values from Fig. 1 (duashed line).
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xexp[ — E, (x,ng8,)/kT ] (20)

where P, and P, are as defined in Sec. H1. As above, we
normalize to n:*""™" in CdTe. Values of a{*"" are shown in
Fig. 17 for T = 800 K. Because the nonlinearity for an atom
of a substituted species was found to be less than for the
common atom species, we find a less dramatic, although still
substantial, difference between the linear and nonlinear re-
sults.

From the above discussion, we see that the effects of a
nonlinear variation of £ _ (n) will be most important for the
common species. One consequence of £_ (n) reaching a
minimum for finite alloy concentration may be a noticeable
enhancement in the diffusion of the common species in the
alloy, for atoms that diffuse by a simple vacancy mechanism
across the complete composition range. and for materials in
which the quality of the alloys is comparable to that of the
constituent compounds, so that, for example, enhanced dif-
fusion-down dislocations are not a factor. For example, Te is
believed to diffuse by an interstitial mechanism*' in
Hg, _ ,Cd, Te, at least for low x; therefore, we would not
expect to observe an enhanced diffusion based on a simple
vacancy mechanism in this system. A second possible conse-
quence of the nonlinear variation in £, and subsequent effect
on vacancy concentrations may be enhanced diffusion via
percolation. It has been suggested*” that percolation effects
might play a role in diffusion in HgCdTe. Because vacancy
densities will be greater on particular classes of sites, deter-
mined by the variations shown in Fig. 2, migration from one
low-energy site to another will be energetically favored over
migration to a higher-energy site, assuming migration ener-
gies do not vary by as great an amount as £ . If there are
enough low-energy sites to form percolation paths, then two
parallel diffusion mechanisms may be present. This kind of
multiple diffusion coefficient profile is observed for Hg in
Hg, _ ,Cd, Te.*'* It remains to be proved that percolation,
rather than diffusion-down dislocation cores or some other
extrinsic mechanism, is the explanation for the Hg diffusion
results. If percolation is the explanation, then based on our
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extraction encrgies, percolation should be a feature of self-
diffusion 1n many alloys.

If deep levels exist because of the presence of vacancies,
the populations of vanous classes of vacancies in the alloys
may be measured by various techniques, such as deep-level
transient spectroscopy or photoluminescence.***" Results
on the relative population of each class of clusters will de-
pend on the correlation state of the alloy, its randomness,
and the vacancy formation energy for the given class of clus-
ter. A deviation from a simple random population for the
various cluster types could indicate either a correlated alloy,
driven by chemical or strain terms in the bulk, or a variation
in the formation energy in the various classes of clusters.

V.SUMMARY AND CONCLUSION

We have found extraction energies calculated using a
tight-binding cluster Hamiltonian give good agreement with
the tight-binding Green's function results, in particular for
the cation vacancies. Our results indicate that the extraction
and Schottky defect formation energies increase with in-
creasing cohesive energy. In a given compound. the calculat-
ed extraction energies are found to be larger for the anion
than the cation. in agreemeni with the experimental resullts,
with the difference between the cation and the anion being
larger in the I1-VI than in the 111-V compounds. Compari-
son of our calculated values with experiments and previous
theory show good agreement for Si and CdTe. although our
calculated values are in general larger than experiments for
those compounds for which data are available. This may be
due to differences in the occupation of Jocalized levels. which
may be poorly modeled in our cluster calculation. particu-
larly for the anion vacancy which in general creates donor
levels in the gap. For the extraction energy of an atom of the
substituted species in the alloys, we find a nearly linear de-
pendence on the near-alloy environment. as expected, be-
cause the substitution is in second-neighbor sites. We have
found a large vanation in the exiraction energy with the
near-neighbor environment for the removal of an atom of the
common species for which the alloy substitution is in the
first-neighbor shell. In some alloys we have found the extrac-
tion energy to reach a minimum away from the compound
endpoints, indicating the possibility for enhanced vacancy
densities, and consequently enhanced diffusion, in the al-
loys.
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APPENDIX A: COULOMB ENERGY

In the zinc-blende semiconductor compounds. the
cations and anions in the lattice carry a net charge of magni-
tude | Z |, but of opposite sign at the two lattice sites. When a
neutral cation or anion is removed from the zinc-blende lat-
tice. the net charge that previously resided at that site is
redistributed in the lattice. This results in a modification to
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tne Loulomo encrgies in the ¢rystal, both to the Madelung-
enhanced K and the average local electron-electron interac-
tion energy U. Defining Z, as the charge initially residing on
an atom in the /th shell about the vacancy site, with Z,, the
charge on the central atom, Z, the charge on a first-neighbor
atom, etc., and 8, as the modification to the charge on an ith-
neighbor atom when the vacancy is created, the contribution
to the vacancy formation energy due to the electron-electron
energy AU and the Madelung energy AK are given by

1 , ) )
AU= —Ue'[(Z +6) -(Z)], Al)
ZZZ e[ ( (Z,)'] (
K =FFSSS
t ;] moom
Z +861(Z +6 Z)(Z
x((,+/>(,+,>_(‘)< ,))' A2
r 7

U U]

Here /and j sum over all shells of atoms, m, and m, sum over
the atoms within the jth and jth shell, respectively, and r, 1s
the distance between the m, th and m th atoms. The prime on
the sum in Eq. (A2) indicates that i = j is not to be included
in the sum. Values for the intra-atomic interaction param-
eter U differ at the cation and anion site and were taken
from Ref. 47.

From the diagonalization of the cluster Hamiltonian
containing a vacancy, we find, for most systems, that the
charge redistribution is primarily to the first-neighbor shell
about the vacancy. Assuming all charge shift is to the first-
neighbor sites, the above expressions reduce to

AU= — (WU, +1U)HZ}e

k=272
d

(A3)

(A4)

In calculating AK we have included an effective reduction in
the Madelung constant to account for the effects of the finite
spacial extent of the atomic charge.*’

APPENDIX B: LATTICE RELAXATION

When a vacancy is created, the atoms about the vacancy
site will in general relax away from their perfect crystalline
position. Here we consider only radial displacements with
respect to the cluster center, Jahn-Teller distortions, which
lower energies by breaking degeneracy, are not addressed.
For the unrelaxed lattice we define R, as the distance from
the cluster center to the nth atom shell. The relaxation in the
cluster containing a vacancy is then characterized by &
defined through the relationship

r,=R,(1-6,), (B1)

with 7, defined as the distance from the center to the nth-
neighbor atom in the relaxed cluster.

The r, are computed by minimizing £ with respect to
bond-length changes. In the energy minimization, the elastic
energy of the lattice beyond the cluster is included as an
elastic continuum. Covalent energy changes from both
bond-length and bond-angle distortions within the cluster
have been included, and rigid nybrids have been assumed.
Here ¥,(d, ), dV,(d,)/dd, and 3V, (d, )/dd * for the ini-

"
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tial-state cluster were fit to the experimental cohesive ener-
gy. the equilibrium bond length d,, and the experimental
bulk modulus, respectively. For small bond-length vana-
tions away from equilibrium, ¥, (d) can be expressed by the
Taylor's series expansion

K)(d) = V()(d()) + (d_ d())V(l)(d())
+id—d,)Vid,). (B2)

This form of ¥, is used 1o compute the overlap energy of
final-state bonds of length d. The strain energy of the elastic
continuum is calculated from

E:I::llgzz'(;g)‘/l(d ):5}’ (BB)

where / corresponds to the outermost shell of the cluster and
C is an effective shear constant™ given by

C=r[16(C,, —C,) +48C,]. (B4)

Experimental values for C,, — C,, and C,, have been used.

APPENDIX C: DANGLING HYBRID INTERACTION

One additional correction to the vacancy formation en-
ergies should be added, because of the Jahn-Teller distortion
at the vacancy site and the resulting splitting of the degener-
acy and lowering of the total.energy. This interaction
between the dangling hybrids at the vacancy site was not
included in the cluster Hamiltonian because only first-neigh-
bor interactions have been included to this point. For iarge
enough cluster sizes (three or more shells of neighbors about
the vacancy site), the dangling hybrid states are narrowly
split into a singly degenerate 4, state and a triply degenerate
T, state, from the coupling of the dangling hybnd levels
through unbroken cluster bonds. The direct dangling hybrid
interaction results in an additional splitting of the levels at
the T, symmetry vacancy site, with the 4, level lowered by
an amount 3a and the T, levels raised by an amount a,
where a is the magnitude of the coupling constant. From
self-consistent Green's function calculations, Baraff. Kane,
and Schliter* found a total of 4, — T, splitting of 1.7 eV
for the vacancy in silicon. Assuming half of this splitting
results from the Coulomb interaction, we estimate
a,, = 0.21 eV. To estimate the contribution of the splitting
of the dangling hybrid energies on the vacancy formation
energy in other compounds, the value of a for Si is scaled
according to

a = S'(ei)(ib_'.):
eSJ\d /)’

as suggested by extended Hiickel theory. Here ¢, is the hy-
brid energy for the cation or anion adjacent to the vacancy
site. Although not rigorous, this simple scaling rule should
yield the proper trends among the compounds.
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DefectsinZnTe, CdTe, and HgTe: Total energy calculations
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Total energies for various impurities and defects in HgTe, CdTe, and ZnTe are calculated.
Calculations were done using a self-consistent linear muffin-tin orbital (LMTO) method within
the local density and atomic spheres approximation. We calculate the total energy for substitution
on both lattice and interstitial sites, and estimate the lattice strain energies. Estimates of the
variation with the alloy predict a linear variation of the substitution energy with the local
concentration. We predict that the Te antisite will be more prevalent in all three of the compounds
than previously thought. The problem of cross doping during heteroepitaxy on GaAs is predicted

to be greater on the cation sublattice.

I. INTRODUCTION

Controlled doping of HgCdTe and HgZnTe during bulk and
epitaxial growth is an important aspect of device fabrication
from these matenals. Understanding the thermodynamics of
the various native point defects and impurities substitution
energies is a key step towards controlling the doping in these
narrow-gap alloys. Equilibrium between the native defects
and impurities, subject to a specified stoichiometry and ex-
ternal phases, must be understood in order to deduce ways to
improve control of doping in these materials. Additionally,
the kinetics of defect and impurity diffsion can be important.
Calculation of thermodynamic properties of the various na-
tive and impurity point defects require free energies (enthal-
pies and entropies) of formation. The energies reported here
are the appropriate enthalpies. These energies also provide a
reference point for the discussion of more complicated phe-
nomena, such as dopant incorporation during nonequilibni-
um epitaxial growth or ion implantation.

Accurate total energies of defects and impurities in semi-
conductors are difficult to calculate. Even more challenging
is the theot y of the energy positions of the deep levels result-
ing from such defects. Although tight-binding methods have
been successful in studying the trends of deep levels as a
function of, for example, host lattice or alloy environment,
experimental guidelines are often used to specify the impuri-
ty potential itself.' Because the local density approximation
(LDA) yields an incorrect band gap, identifying the energy
levels of localized states in the band gap in first-principle
calculations using the LDA is still an outstanding problem.
Additionally, in the present work, the use of supercells leads
to a large dispersion in the localized states, adding to diffi-
culty in directly calculating the deep state energies, although
attempts have been made to do so.” In the present work, we
do not focus on the exact positioning of the localized levels in
discussing our results, although general trends in the deep
levels are discussed in some cases.

The remainder of this paper is organized as follows. In
Sec. 11, the theoretical approach is summarized and refer-
ences to the appropriate literature are made. In Sec. III, we
present results for an array of native defects and dopants in
HgTe, CdTe, and ZnTe. The work is summarized and con-
clusions are drawn in Sec. IV.
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Il. THEORY

The self-consistent linear muffin-tin orbital (LMTO)
method, originally developed by Andersen,? is used to calcu-
late the substitution energies in HgTe, CdTe, and ZnTe. As
is customary, the LDA to the exchange-correlation energy 1s
used to construct an effective one-electron potential. Within
the atomic spheres approximation, LMTO is computation-
ally efficient and, unlike the pseudopotential method. is suit-
able for solids composed from any atom in the periodic table.
We use a minimal (spd) basis set on atom- and space-cen-
tered atomic spheres. The resulting 18 functions per atom
are further reduced by orbital downfolding* of all d-orbitals
except those on the cation atomic spheres. Without such an
optimal basis set, the large data base of calculations present-
ed here would not have been possible.

Substitution energies are calculated from a difference in
total energies of the compound with and without the defect
orimpurity. Large unit cells of 32 spheres with one impurity
per cell are repeated periodically to form a superlattice of
impurities. The sensitivity of the substitution energies to the
size of the unit cell has been examined and errors of the order
of 0.2 eV are estimated. The periodic array of impurities
results in the dispersion of the impurity states into bands in k
space, contributing to the difficulty in identifying the deep
state energies. As a check of the present supercell approach,
we have repeated the LMTO Green'’s function calculations
done by Beeler er al.* using supercells, and we find similar
conclusions for the chalcogen impurities in silicon.

Because the lattice strain about some impurities and de-
fects can be substantial, calculation of the relaxation energy
is necessary to yield an accurate estimate of the total ener-
gies. In the present calculation, Methfessel's form of the
force theorem® is used to calculate the pressure on each su-
percell containing a single defect or impurity. An upper esti-
mate of the lattice-relaxation energy is calculated assuming
all bonds in the supercell respond uniformly to this pressure,
characterized by the bulk modulus of the host lattice.

The atomic spheres approximation (ASA), as used in the
present work, also substitutes for the true density functional
one that sphertdizes the output density. In consequence of
this, calculation for defects with high deviations from cubic
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symmetry, (e.g., defects that cause large strain) must be
viewed with caution.

Ill. RESULTS

For the pure compounds without any defects, the LMTO-
ASA was found to give cohesive energies, bond lengths, and
bulk moduli in good agreement with experiment. Calculated
cohesive energies per bond are — 1.28, — 1.19,and — 0.91
eV for ZnTe, CdTe, and HgTe, respectively, compared 1o the
experimental valuesof — 1.20, — 1.10,and — 0.82¢V. To-
tal energies for several group 1B, 11, and V dopants in the
pure compounds HgTe, CdTe, and ZnTe are summarized in
Table 1. Also shown are the total energies for the antisite and
self-interstitials. Two nonequivalent tetrahedral interstitial
sites were considered, one with four anion nearest neighbors
I (Te), and the other with four cation nearest neighbors
I(Zn, Cd, or Hg).

The total energies given in Table I are referenced to initial
and final states where the excess (or exchanged) atoms are

TasLE L. Total energies of defect formation. Notation is A (B), where A is
the defect and B is the defect site. When atoms are added or removed in the
formation of a defect, the free atom initial and final states are used as a
reference. Sign in parentheses following the energies have the following
meaning: ( + + ) relaxation is outward and relaxation energy is greater
than0.25 eV, ( + ) relaxation is outward and relaxation energy is less than
0.25 eV; (.) relaxation is negligible; ( — ) relaxation is inward and relaxa-
tion energy is less than 0.25 eV.

Total energy (eV)

Defect ZnTe CdTe HgTe

Group IB impunities

Cu (cation) —1.41(+) —~0.98(-) —-221(-)

Ag (cation) —0.28( +) —0.62(-) —1.92(-)

Au (cation) —0.53() - 1.02(-) - 2.33(-)
Group III impurities

Al (cation) —1.04( +) — 1.57()) —3.02(-)

Ga (cation) —~0.25(+) -~0.77(.) - 2.02()

In (cation) +080(++) —044(+) -193(+)
Group V impurities

P (Te) + 1.26( -) + 1.39(-) +1.07(-)

As (Te) + 1.10( -) +1.23(-) +080(-)

Sb (Te) +0.95(-) + 1.08(.) +0.48(-)

P (cation) + 1.45( +) +0.74(.) —0.56(.)

Sb (cation) +307(++) + L51(-) —0.36( +)
Impurity-interstitials

P (7 (cation)] +00I(++) =017(+) —041(+)

P[I(Te)) +054(++) +005(+) —0.90( +)

In {7 (cation)] —0.83(+ +)

In{I(Te)] —0.82(+ +)
Self-interstitials

Cation [/ (cation)) +043(+ +) +087(+ +) +098(+ +)

Cation {7 (Te)] +078(+ +) +1.03(++) +084(+ +)

Te [1 (cation) ] +261(++) +145(+4+) +1.33(++)

Te [/ (Te)) +428(++) +263(++) +132(+ +)
Antisites

Cation (Te) +4.62( +) +3.94(.) +3.22()

Te (cation) +4.59% + +) +2.52(+) +0.89( +)

P
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taken to free atom states. For example, for the anion antisite
defect in HgTe, the iniual state is bulk HgTe with a free Te
atom and the final state is bulk HgTe with one antisite defect
and a Hg in the free-atom state. This serves as a convenient
reference from which other energies of interest can be easily
obtained. We caution against a direct interpretation of the
numbers in this table, because the relative and absolute mag-
nitudes, as well as the sign of the energies, may change when
another reference state is chosen. Perhaps of more interest
for some cases is when the impurities are taken from the pure
solids, rather than the free-atom state. This reference state
was calculated for several of the impurites, and substitution
energies are given in Table II. For impurity doping during
LPE and bulk growth, the liquid final state is the relevant
one, and can be obtained if the energy of the atoms in the
liquid phase are known.

A. Cu, Ag, and Au impurities

We first consider a situation in which a group IB metal
(Cu, Ag, or Au) is deposited as a solid on the surface of the
II-VI compound of interest, and ask which has the lowest
energy for substitution on the cation lattice. From Table 11
we find that Ag has the lowest substitution energy in HgTe
and CdTe, while Cu has the lowest energy for ZnTe. Implicit
in these energies is the assumption that the replaced cation
escapes to the vapor and equilibrium is achieved (i.e., rates
of diffusion are not relevant).

The above ease of substitution will be changed if the impu-
rity is being introduced from the vapor. In this case, Ag will
substitute most easily in ZnTe and CdTe, while Au will sub-
stitute most easily in HgTe. For ZnTe and CdTe, which have
relatively wide band gaps, the zero-temperature substitution
energtes for the intrinsic compound may be altered as a de-
pendence on the Fermi energy and deep-state energies enters
in the substitution enthalpies.

Although the above conclusions are based on enthalpy
considerations alone, the conclusions still hold if the three
metals are compared for the same external conditions, i.e.,
temperature and Hg pressure. The substitution energies are
only one aspect needed to understand the diffusion of these

TasLE II. Total energies of defect formation. Notation is A (B), where A is
the defect and B is the defect site. For Te and impurity, the pure solid is used
as a reference; the free-atom state is used as the final state for the Zn, Cd, or
Hg cation. Energies for the elemental solids are taken from experiment.

Total energy (eV)

Defect ZnTe CdTe HgTe
Cu (cation) + 2.08 +2.51 + 1.28
Ag (cation) + 2.67 +2.33 + 1.03
Au (cation) + 3.27 + 2.78 + 1.47
Al (cation) + 2.35 + 1.82 +0.37
Ga (cation) + 2.56 +204 +0.79
In (cation) +332 +2.08 +0.59
P (Te) + 2.50 +2.53 +2.31
As (Te) + 1.87 +2.00 + 1.57
Sb (Te) + 1.51 + 1.64 + 1.04
P (cation) +4.88 +4.17 + 2.87
Sb {cation) + 5.82 +4.26 + 2.39
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metals into the compounds. The rates of diffusion, as well as
other chemical reactions (e.g., formation of metal tellu-
rides) must be included for a full description of the behavior
of these metals with the compounds.

B. Al, Ga, and In impurities

Apgain we first consider the case where Al, Ga, or In solid
15 deposited on the surface and ask the relatuve ease for sub-
stitution into the compound on the cation sublattice. From
the energies in Table 11, we find that Al wiil substitute most
easily on the cation lattice for all three compounds: ZnTe,
CdTe, and HgTe. In CdTe and HgTe, In—an oft-employed
dopant in HgCdTe—also has a low substitution energy; in
ZnTe, because of a large size mismaich, the In substitution
energy 1s substantially larger than that of Al and Ga. Based
on these results, one would expect the doping of HgZnTe
with this class of impurities will be more difficult than in
HgCdTe. Because all of the energies for the group Il impur-
ities in HgTe are less than the respective impurities in ZnTe
and CdTe, we predict that the equilibrium doping in HgTe
(and thus HgCdTe and HgZnTe) will be easier than in the
pure compounds CdTe and ZnTe.

When the free-atom final states are considered, the group
ITI elements are predicted to be stable in ZnTe, CdTe, and
HgTe, i.e, their binding energies are less than zero, with the
exception of the highly strained In impurity in ZnTe. For the
In going into the interstitial sites in HgTe, the energies are
also less than zero, indicating the relative stability of these
sites in HgTe. and the mercury-rich alloys HgCdTe and
HgZnTe. Thus, if the In atoms are delegated to the intersti-
tial sites during epitaxial growth (e.g., via kinetic processes
on the growth surface), the interstitial sites will be relatively
stable for these atoms.

Consider one further situation in which the group III ele-
ment is incorporated interstitially into the compound, either
through ion implantation or during epitaxial growth. We ask
then how much energy does it take to exchange the intersti-
tial with an atom on a cation lattice site, leaving the cation in
an interstitial site and the impurity on a lattice site. For ex-
ample, for In in HgTe, we consider the following reaction:

In, +HgHg—-InH8 + Hg,. (N
The energy for this reaction is
E = + EHg(I) - Eln(l) +EIn(Hg)
= —0.2eV. (2)

Although this reaction is found to be exothermic and there-
fore 1s predicted to proceed based on total energy consider-
ations alone, this conclusion is not within the accuracy of the
present calculation. Additionally, activation barriers may be
large because of the atom-swapping process. Additionally,
the equilibrium with the other native defects such as vacan-
cies and antisites must be considered before predicting if the
reaction will proceed. The answer in any particular case may
well depend on the detailed initial state of the solid, e.g., the
vacancy concentrations, dislocation density, or carrier type.
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C. P, As, and Sb impurities

Because the group V elements are slow diffusers,” it is just
this class of impurities that is desired to achieve impunty
controlled p-type doping in HgCdTe. We find that the Sb
substitution energy 1is smallest, while P is largest in all three
compounds. The differences between the substitution ener-
gies in ZnTe, CdTe, and HgTe are not as pronounced as was
seen for impurity substitution on the cation site. Substitution
energies for P and Sb on the cation sublattice have also been
calculated. Note that in HgTe the substitution energy for P
does not differ significantly on the Hg and Te sublattice.
Additionally, we see from Table I that the interstitial energy
of P with respect to solid P is comparable to the lattice substi-
tution energies. This result 1s consistent with the amphoteric
behavior of this element in HgTe, observed by Vydvanath ®

We also note that the substitution energies for all the
Group V impurities are largest in CdTe. This suggests that
doping may be more difficult in HgCdTe than in HgZnTe.
This conclusion is based on prchiminary calculations, which
indicate that the substitution energies of this class of defects
varies linearly with composition in the alloy.

D. Native defects: Accommodation of deviations
from stoichiometry

Deviations from stoichiometry can be accommodated by
a number of native defects: antisites, interstitials, vacancies,
second phase precipitates. and extended defects (e.g., point
defect complexes, dislocations). As discussed by Schaake
and Tregilgas.” which of these defects dominates is deter-
mined both by equilibrium considerations and the rate at
which equilibrium is established.

We considered the relative enthalpies for accommodation
of a specified nonstoichiometry by the first four defects
named above. We arbitranly choose the reference state as
that of the pure compound with excess Te accommodated by
Te solid. With respect to this reference state, the energy
change for the fourth mode of accommodation is zero. The
relevant reaction to accommodate cne excess Te by the for-
mation of an Te antisite is

Te, —~1Tey, Te,,. (3)
The energy for this reaction is given by 0.5 (Eq,,, — 2E,
+ 2E;, ), where E;_ and E, are the absolute magnitudes of
the energy per atom of Te solid and energy per bond for the
HgTe compound. both with respect to the free atoms. To
accommodate one excess Te by the formation of a Te inter-
stitial, i.e.,

Te, - Te,, (4)

an energy Eqsreorng ) + Ete, is necessary. To calculate
the energy to accommodate the nonstoichiometry by Hg va-
cancies, we use the experimental values for the Hg vacancy-
formation energy from Vydyanath,'® E vingy = 2.2 €V, and
the experimental cohesive energy per bond of 0.82 eV for
HgTe. The relevant equation for the above is

Te, -1V Teq., (5)

with energy given by E,. ., — 2E, + E;. . The energies for
the above equations, as well as those for CdTe and ZnTe, are
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TABLE II1. Defect energies to accommodate excess Te (or Hg, Cd or Zn
deficiency ). Energies are referred to the pure stoichiometnc compound
with the nonstoichiometry accommodated by sohd Te. and are per excess
Te. The two values shown for the interstitial correspond to the cation- and
anion-imerstitial sites.

Total energy (eV)

Native defect ZnTe CdTe HgTe
Te antisites + 321 +2.29 + 1.75
Te intersunals + 482, - 650 + 367 +4.84 + 357, +1357
Caunon vacancies + 4.90 +4.70 + 278
Te precipitates 0.00 0.00 0.00

summarized in Table III. Vacancy-formation energies for
CdTe and ZnTe were taken from experiment'' and a tight-
binding calculation, ' respectively.

Our results indicate that the antisite has a lower enthalpy
of formation than the vacancy in all three compounds, and
that the energy for the interstitial is comparable to or greater
than that for the vacancy. The Te antisites and interstitials
both exhibit large strain energy, an estimate of which has
been included in the energies in Table III. These strain con-
tributions are estimates, and thus the conclusions reached
here must be viewed as somewhat tentative. The configura-
tional entropy contribution to the free energy for the anti-
sites and vacancies are the comparable, and our results indi-
cate that the antisite should be abundant. If—as exnected on
simple considerations—the Te antisite is a donor, it could be
a major contributor to the residual donor in Hg annealed
samples. If both vacancies and antisites are present, compen-
sation will occur and a net p- or n-type material can result,
depending on the defect-state structure of each material.
Finally, the Te antisites may have associated with them deep
levels in the band gap, most probably donorlike. These may
be the deep states at 0.4 E,,and0.7 E,, where Eg is the band
gap energy, present in undoped HgCdTe, which appear don-
orlike.'* We are currently confirming the results of the total
energy calculations using a full-potential LMTO, in which
the ASA is removed. For now, we conclude that the antisite
is probably more abundant than previously thought, and
that it may be the source of the donorlike deep states in
undoped HgCdTe.

E. Heteroepitaxy on GaAs

To study the tendency for cross doping across a GaAs/II-
VI epilayer interface, we have calculated the energies for
interchange of cations or anions. For example, for a CdTe
epitaxial layer on a GaAs substrate, we must consider the
reactions

CdCd + C}ac,a _’Cdou + GaCd (6)
and
Ter. + As,, —~Te,, + Asq,. 7

Table 1V summarizes calculated substitution energies for
Zn, Cd, Hg, and Te in GaAs. The energies of the above reac-
tions for ZnTe, CdTe, and HgTe on GaAs are also given in
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TasLE IV. Total energies of defect formation for Zn, Cd. Hg, and Te 1n
GaAs. Reference ts same as 1n Table |

Total energy (eV)

Defect/defect reaction ZnTe CdTe HgTe
Cauon (Ga) + 214 + 3.25 + 4,61
Te (As) +292 + 292 +292
Amnion exchange [Eq. (7)] + 1.89 248 +2.59
Cauon exchange {Eq. (6)]) +393 + 4.15 + 3N

Table IV. All of the energies for the interchange reactions
are positive, indicating that, based on the enthalpy contribu-
tion to the free energy, the reactions will be inhibited (endo-
thermic). Thus, the enthalpies of reaction will not tend to
drive cross-doping heteroepitaxy in this system. Because the
entropy contributions for cation and anion lattice exchange
are of the same form, and because the cation energies are
smaller, we can conclude that cross doping on the cation
sublattice will be more dominant than on the anion sublat-
tice. Note that the calculated enthalpies do not include the
strain expected to be present on the lattice-mismatched in-
terface.

IV. CONCLUSIONS AND FUTURE WORK

We are currently developing several improvements to the
present work, which should result in more accurate esti-
inates of the total energies. First, the latuce relaxation ener-
gies were estimated using the total pressure on a supercell,
assuming that all the bonds in the lattice respond uniformly.
characterized by the bulk modulus. Because the strain is lo-
calized in the bonds nearest to the misfit impurity or intersti-
tial, the bonds nearer the defect will, in fact, relax more than
those far from the defect. We are currently working on this
problem. Second, the identification of the energy position of
any deep states prcduced by the defects, such as the antisites
ard interstitials, remains a challenge. The first improvement
to the current work is the implementation of a Green’s func-
tion approach to calculate the properties of truly isolated
defects in the compounds. Unfortunately, until the source of
the band gap problem in the LDA is resolved, at most one
can expect from such calculations is trends in the deep levels,
not absolute energies with respect to the band edge. Finally,
the variation of substitution energy with alloy concentration
needs to be investigated further. Preliminary calculations
indicate that the substitution energies vary linearly with al-
loy composition.

Several conclusions can be drawn from the above results.

(i) In appears relatively stable in the interstitial sites, per-
haps explaining the difficulty in obtaining active In during
epitaxial growth, where nucleation and kinetic effects may
favor interstitial incorporation of In.

(ii) Enthalpy considerations indicate that interstitital In
may be favored to exchange with Hg on lattice sites.

(iii) P and Sb energies on the cation and anion sublattice
and interstitial sites in HgTe are all comparable, consistent
with the experimentally observed amphoteric behavior of
these elements, as a function of Hg pressure.
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(iv) The Te antisite is predicted to be more abundant than
previously expected in ZnTe, CdTe, and HgTe. The Te anti-
site may be responsible for the donorlike deep statesat 0.4 E,
and 0.7 E; in the HgCdTe.

(v) The energy to remove a Hg atom from a lattice site to
the vacuum is smaller than to remove a Hg atom from a
lattice site to an interstitial.

(vi) Bzsed on preliminary calculations of the alloy vari-
ation of ihe substitution energies, we predict that doping of
the group V elements will be easier in HgZnTe than in
HgCdTe.
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ABSTRACT

We review our recent work on the surface binding
energies for HgTe and CdTe on the (111) and (III)
surfaces. We find that the surface binding energies
are not simply proportional to the number of surface
bonds times the bulk cohesive energy per bond, bu.
rather depend on the ionicity and band gap of the
compound. From the surface binding energies for an
isolated atom and an atom in the middle of an island,
we have deduced an effective surface-dependent pair
interaction, which is found to be attractive for HgTe
and repulsive for CdTe. Concequences of these inter-
actions on the nature of the growth are discussed.

1.0 INTRODUCTION

Molecular beam epitaxial (MBE) growth of HgCdTe has established itself as an impor-
tant method for the fabrication of superlattices, abrupt heterojunctions and other novel
device structures. However, growth by MBE is plagued by a number of difficulties. Mate-
rial growth rate, stoichiometry and quality are determined by many parameters, including
the orientation of the growth surface, substrate temperatures and the beam fluxes. In ad-
dition, dopant incorporation and activity in MBE growth differ markedly from traditional
bulk growth from the liquid, and may vary with substrate orientation. Optimization of
growth parameters in the absence of any microscopic insight as guidance is a difficult as
well as an unsatisfying task. Much insight has been gained through experimental programs,
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some of which include powerful surface-analytic techniques such as RHEED. Another ap-
proach has been to understand the MBE growth through theoretical models. The goal of
these models has been to capture the essential physics of this admittedly complex process
and to provide guidance into the effects of variations within some experimental parameter
space. An important input to these models is the binding energies of the constituent atoms
on the surface. To our knowledge, all of these models assume surface energies which are
calculated by multiplying the number of bonds being made to the surface times the bulk
cohesive energy per bond. We have removed this assumption.

In this paper we summarize our recent work on surface energies for growth models of
the constituent compounds of HgCdTe, HgTe, and CdTe, on the (111) and (I11) surfaces.
The results presented here have been .published previously!-3 and the reader is rt;ferred
there for further detail.

2.0 THEORETICAL APPROACH

We begin by defining several surface energies of interest for the growth of a compound
AB. Consider the (111) surface which is terminated with cations (A) which are triply
bonded to the layer below. When an isolated anion (B) bonds to this surface it makes one
bond to the surface. We refer to the energy needed as the dilute surface binding energy,
EB(111). Similarly, the binding energy of an isolated A atom on the (III) surfaces is
E’dA(lll). Another energy of interest in the modeling of the growth process is the energy
of binding, not of an isolated atom, but rather an atom in the middle of an island of like
atoms. We refer to this as the binding energy in the concentrated limit. For example the
binding energy of a singly bonded B atom, in the middle of a B-atom island, to the (111)
surface is denoted by EB(111). Thus, considering these two surface concentration limits
only, we calculate eight energies for each compound (including the energies for the atoms
that are triply bonded to the layer below.

From the dilute and concentrated binding energies for an atom on a given surface, we

can deduce the effective surface- pair interaction energy. For example, by comparing

1. Krishnamurthy, S., M.A. Berding, A. Sher, and A.-B. Chen, Physical Review Letters

64, 2531 (1990).

Krishnamurthy, S., M.A. Berding, A. Sher, and A.-B. Chen, Accepted for publication

in the Journal of Applied Physics.

3. Berding, M.A., S.Krishnamurthy, A. Sher, and A.-B. Chen, Journal of Applied Physics
67, 61735 (1990).

o
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E dB (111) and EB(111), we note that both energies include the binding to the underlying
layer and their difference is in the in-plane bonds. On the (111) surface, these six in-
plane bonds are second-neighbor bonds, and the in-plane pair interaction energy is given
by Ep = (_E_f%ljf_)_ We have calculated the surface binding energies using a tight-binding
Green’s function method which is especially suitable for systems with planar s;mmetry,
such as superlattices and surfaces. This method has also been used to calculate the cleavage
energies, yielding good agreement with experiment3. The ideal surface Green’s function
is perturbed by the removal or the addition of an atom to the surface for the calculation
of the concentrated and dilute surface energies, respectively. The change in the density of
states resulting from this perturbation is used to calculate the change in electronic energy

upon removal or addition of an atom. ‘Calculational details are given elsewhere! 2

3.0 RESULTS

Surface binding energies for the (111) and (II1) surfaces are calculated for HgTe and
CdTe. Results are given in Table 1. Also shown are the bulk cohesive energies per bond, E;.
From the dilute and concentrated energies an effective surface pair interaction is deduced
and these energies are also summarized in Table 1.

TABLE 1 : SURFACE BINDING AND PAIR INTERACTION ENERGIES

Ea(111) Ec(111) E Eg(ITN E(TTT) E Eo

eV eV _eV eV eV oV i

HgTe  Hg 0.3 -1.1 -0.23 0.2 -0.3  -0.08 -0.8
Te -1.8 -3.8  -0.33 -2.8 -2.8 0 -0.8

Cdle -2.7  -0.6 0.35 -2.2 -1.3 0.15 -1.1
Te -3.9. -42 -005 -52 -2.1 0.52 -1.1

We note several features of the binding energies in Table 1 and their concequences.
First we see that the surface binding energies are not simply proportional to the number
of bonds being made to the substrate. This is evident from the fact that, for example,
EB(111) # EdB(lll) # 1. E,, one being the number of bonds being made to the surface.
Also, as expected, the magnitude of the surface binding energies is larger for CdTe than for
HgTe, consistent with the difference in bond strengths in these compounds, and the anions
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are more strongly bound to the surface than the cations. Furthermore, we note that in
some cases E; > E¢, implying that an isolated atom is less strongly bound to the surface
than an atom in an island, which is what one might expect based on the assumption of
attractive second-neighbor bonds, while in other cases, E; < Ec, implying that an isolated
atom is more strongly bound to the surface. The former case correspond to Ep < 0 and an
effective attractive surface- pair interaction, and the latter case to Ep > 0 and an effective
repulsive surface-pair interaction

The surface pair energies in general are found to be repulsive for CdTe and attractive
for HgTe. These results were explained! from differences in the charge .ransfer from
cation to anion surface states, which is more pronounced in systems with larger band gaps.
Furthermore we have found that the repulsive energies can be associated with more ionic
compounds with large differences between the anion- and cation derived surface states.

The difference in the nature of surface interactions should manifest itself in the nature
of growth surfaces at low temperatures. By low temperatures we refer to temperatures
less than some critical temperature, T, which corresponds to some surface order-disorder
transition. At temperatures above T, entropy will dominate and for surfaces with both
attractive and repulsive effective pair energies the total surface will be largely disordered.
Below the critical temperature the surface will be largely ordered, consisting of islands
of atoms when Ep < 0 and consisting of ordered arrangements of atoms minimizing the
number of in-plane atom pairs when Ep > 0.

4.0 CONCLUSIONS

Although the above discussion leads to some insight into the different behavior of the
growth surfaces expected for HgTe and CdTe for T < T¢, the energies must be incorporated
into a more complete growth model that includes the effects of, for example, surface-atom
mobility. We can extrapolate to the alloy system Hg;_,CdzTe to deduce the nature of
the surface-pair interactions there. Because all infrared applications of this alloy are for
low x values and thus narrow energy band gaps, we expect the surface energies to be
largely attractive, implying layer growth through island formation. Some differences can
be expected between the two cation species on the surfaces. We are currently investigating
these differences.

This work has been supported by ONR contract N00014-88-C0096 and NASA contract
NAS1-18226.
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The atomic distributions on surfaces of Si, GaAs, HgTe and CdTe are studied as functions of temperature and substrate

onentation in the [100], {111) and [111] directions. Surface entropy is caiculated within the quasichemical approximation and the pair
interaction energies are obtained using the tight-binding Green's funcuon method. In most cases considered, the interactions between
the atoms are attractive and they tend to congregate into islands for submonolayer coverage at temperatures below the roughening
transition temperatures. Free energy curves for double-layer growth are presented. We find that growth in this case is mostly layer by
layer as is often observed in atomic layer or molecular epitaxial growth. However, in cases such as Ga terminated (111) GaAs
surfaces and most CdTe surfaces, the in-plane interactions are predicied to be repulsive. The calculated order-disorder transition
temperatures for these cases are often much larger than usual growth temperatures and, consequently, incompletely filled surfaces are
expected 10 have domains in which atoms and vacancies arrange themselves in superlatuce patterns.

1. Introduction

Properties of semiconductor surfaces during ep-
itaxial growth are sensitively dependent on the
nature of the interactions between surface atoms.
When the interaction between the atoms is attrac-
tive, the surface grows with formation of islands at
temperatures below a critical temperature known
as roughness transition temperature. However,
when the interaction between the atoms is repul-
sive, the surface undergoes an order-disorder
transition. At growth temperatures below the
order-disorder transition temperature, surface
atoms and vacancies arrange themselves in a su-
perlattice pattern that minimizes the number of
atom-atom pairs. Irrespective of the nature of
interaction, the sites are occupied uniformly at
growth temperatures well above the corresponding
critical temperature.

Growth by low-temperature epitaxial methods
such as atomic layer epitaxy (ALE) and molecular

beam epitaxy (MBE) is believed to take place
under nonequilibrium growth conditions [1-4].
However, when the surface relaxation rate is much
larger than the arrival rate, a thermodynamic
model can be expected to qualitatively describe
the morphology of the growth surface. This is
because surface atoms will have enough time to
minimize their free energy before the arrival of the
next atom. Statistical models with various degrees
of approximations are frequently used to study the
nature of the surface [S-14). To our knowledge,
none of these studies has been extended to con-
sider the surface arrangement of vacancies in a
zinc-blende lattice.

In this paper, a thermodynamic model in a
quasichemical approximation (QCA) with pair in-
teractions is used to study the equilibrium multi-
layer growth surface. Results of multilayer growth
of a model cubic lattice are given. The strength of
pair interaction on various ideal semiconductor
surfaces is obtained from various surface sublima-
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tion energies calculated using the tight-binding
Green's function method {15.16}. The pair interac-
tion energies are then used in this thermodynamic
model to obtain the minimized free energy. The
qualitative nature of realistic semiconductor
surfaces is discussed.

2. Thermodymic model

We assume that total enthalpy of the surface
can be written as a sum of various pair energies.
In the QCA, we assume that these patrs are dis-
tributed randomly [17]. Although, in most cases.
this approximation is better than the Bragg-Wil-
liams approximation, it still overestimates the en-
tropy. The roughening transition temperature ob-
tained for a square lattice with QCA is about 25%
larger than the exact value due to Onsagar [5]. In
addituon, because the correlation between the pairs
and beyond are¢ assumed to be zero, the surface at
the critical temperature, where large scale fluctua-
tions exist, is not expected to be described cor-
rectly. However, epitaxial growth by ALE and
MBE are normally carried out at temperatures
well below the transition temperature, and the
approximation considered here will remain valid.
Higher order approximations with corresponding
ciuster energies will be the subject of future work.
The results obtained using QCA with pair interac-
tion can be obtained equivalently with Bethe's
approximation [8]. However, generalization to
multilayer growth problems and higher-order ap-
proximations are straightforward with QCA en-
tropy expression used here.

To calculate the free energy within the QCA,
first we identify all distinct classes of pairs that
contribute to free energy. Then ¢ write the prob-
ability for the occurrence of each type of pair.
Using appropriate factors for indistinguishability
of pairs, the entropy for different surface layers is
written with constraints relating various pairs. The
free energy obtained from the entropy and the
interaction energy for each class of pairs, is mini-
mized to get most probable distribution. In our
rmultilayer model, an atomic site in any upper
layer can be occupied even if the site immediately
below it is not occupied. Although these config-
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urations are energetically less favorable, they con-
tribute to entropy and thus they should be allowed
in the calculation of free energy. In a mululayer
model. we consider four types of pairs (viz.. AA.
AV, VA, VV) within a layer, and the same four
types of pairs with the laver below, where A and
V, respectively. represent atom and vacancy. The
number of pairs in each of these classes in the /th
layer is denoted as M, and Q, ' where p takes
values 0. 1. 2, or 3. ¢, and E, are corresponding
pair energies in units of k7,, where 7, is the
growth temperature. We further denote the ran-
dom probability of finding respective pairs in the
ith layer as y,(0) and z,(0). 7, and 7, are the
number of intra- and inter-plane near neighbors.
respectively. Then the change in free energy, 4/..
is

' 1
AL:Z[E[%T)O)';(P+7;,:;,]*‘ﬁln “V,], (1)
e
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Note that for every layer i, we introduce nine
variables (viz, M, Q,”"' and x,), and eight
constraints. Thus, the free energy has to be min-
mized in one additional vanable for every new
layer added. As a test case, we can use this model
to study the (100) surface of a mono-atomic sim-
ple cubic solid. We further assume that atom-atom
pair energy is ¢, and all other energies are zero.
Then we find that smooth-to-rough transition oc-
curs at the value of 0.74 for kT, /¢,. In addition,
the transition temperature changes little upon in-
clusion of interlayer interactions. This is in agree-
ment with that obtained by Burton and coworkers
(8], who calculated the transition temperature in
Bethe’s approximation. Although the surface de-
composition and transition temperature change
very little with the addition of a layer, the finite
values obtained in our calculation of the number
of various pairs in different layers will provide
information on surface morphology when realistic
crystal structures are examined.

3. Pair interaction energies

The model described in the previous section has
been generalized 1o the case of diamond and zinc-
blende lattices. In order to use this model to study
realistic semiconductor surfaces, we need the pair
interaction energies. These energies for various

Table 1

surface orientations are obtained using the tight-
binding Green's function (GF) method. Because
the details of calculauonal procedure have been
published elsewhere [15.16,18], here the discussion
will be limited to offer only continuity.

We define surface sublimation energy (SSE) as
the difference between the total energy of a surface
plus a free atom and that of the surface with the
atom bonded to 1t. In this convention, a positive
SSE means that atoms will require energy to go
from surface to vapor. The calculation of SSE
proceeds in two steps. First, the GF for an ideal
atomically smooth surface is calculated in terms of
bulk GF. using Dyson’s expansion. Then. the
modified GF with an atom added to or removed
from the surface is calculated in terms of surface
GF. The change density of states introduced by
perturbations is used to obtain the electronic en-
ergy contribution to SSE.

The perturbation to the surface that involves
the removal of an atom. leaving a surface vacancy
behind. is referred to as surface sublimation from
concentrated surface and the corresponding SSE is
denoted as E_. This removal entails breaking bonds
with the layer below and in-plane. and sometimes,
second-neighbor surface bonds. The perturbation
to the surface that involves the removal of an
atom thus leaving an ideal flat surface behind, is
referred to as sublimation from dilure surface and
the corresponding SSE is denoted as E,. Here, the
removal necessitates breaking bonds only with the
layer below.

In this model. it is clear that the effective
atom-atom pair interaction energy, between atoms
on the surface is simply (E_ — E,)/n,. where 7, is

In-plane pair interaction energy, ¢, and transition temperature; all energies are in eV; number of bonds broken with the layer below
are given in parentheses; the roughening transition temperature (T) and order-disorder transition temperature (7.*) are in kelvin

Onien- Removed Si GaAs CdTe HgTe

tation atoms o T, (K) % T. (K) < T, (K) € T. (K)

(111) a(l) 0.35 3700 0.25 2600 0.05 500 0.33 3500
c(3) 0.37 3900 0.02 200 -0.35 1400 * 0.23 2400

11y a(3) 0.37 3900 0.07 700 -0.52 2100 * 0 0
1) 0.35 3700 -C.10 410 * -0.15§ 600 * 0.08 900

(100) a(2) 0.48 3200 0.33 2200 ~0.60 4000 * 0.18 1200
o2) 0.48 3200 0.25 1700 -0.50 3300 * 0.30 2200
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the number of near-neighbor surface bonds. A
positive (negative) ¢, implies an attractive (repul-
sive) interaction between surface atoms. Calcu-
lated values of ¢, are given in table 1 for (111),
(111) and (100) surfaces of Si, GaAs, CdTe and
HgTe. Notice that the (111) surface can terminate
either with tniply bonded cations or with singly
bonded anions. The opposite bonding arrange-
ment is found in the [111} direction.

E_ 1s expected to be larger than E,, because all
dangling bonds in the concentrated case interact
to form a partially filled band with resulting lower
energy. We see that this interpretation explains
the trends observed in Si, HgTe and, in most
cases, GaAs. However, in all other cases we find
the in-plane surface interaction to be repulsive.
The mechanism that drives some semiconductor
orientations to have E_, smaller than E; has been
interpreted to be the charge transfer between the
surface Fermi level and the newly exposed dan-
gling bond states [15]. Because such a transfer is
large in wide-gap ionic compounds, the surface
interactions CdTe and ZnTe are predicted to be
repulsive.

4. Results and discussion

In ALE, grown from a free atom vapor phase,
only one type of atom species (anion or cation) is
present at any given time. The atom-atom pair
energies calculated in the previous section can be
used in a single-layer growth model to obtain
minimized free energy as function of layer cover-
age, x. In this model, all other pair energies are
assumed to be zero. When the interaction between
the atoms is attractive (e, > 0), the surface will
undergo a smooth-to-rough transition as the grow-
th temperature is varied near the critical tempera-
ture, 7. At temperatures below T, the growth will
take place with the formation of islands and atomic
concentration in those islands will be given by
location multiple minima in free energy versus x
curve. At temperatures well below T, the minima
are expected near x =0 and x = 1. In these cases,
islands formed on the surface are nearly fully
occupied and the reminder of the area is nearly
empty. As the surface coverage is increased, the
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islands grow in size with a fixed vacancy con-
centration unul the layer is fully grown.

Because the (100) surface 1s a square lattice,
exact value of 0.57 ¢,/kg given by Onsagar [5] 1s
used to obtain T_. kg is the Boltzmann constant.
For the hexagonal latuce, observed in (111) onen-
tation, the exact value of 7_ is 091 ¢,/ky [19]
The calculated T are given in table 1 for Si, HgTe
and most GaAs surfaces. Note that the T, is much
larger than the typical growth temperature for
these elements and compound (except for (111) Te
terminated HgTe surface) ALE growth of these
matenials 1s dominated by formation of nearly
perfect islands.

When the interaction between surface atoms is
repulsive, as in a Ga-terminated (ﬁl) GaAs
surface and all CdTe surfaces, the free energy of
eq. (1) always remains negative with one mini-
mum. However, these surfaces undergo a different
kind of phase transition known as order-disorder
transition. At temperatures above the critical tem-
perature, T *, the surface is disordered and sites
will be occupied randomly by atoms and vacan-
cies. At temperatures below 7.*, the atoms and
vacancies on the surface will arrange themselves in
domains of ordered patterns 10 minimize the num-
ber of atom-atom pairs. The nature of the super-
lattice arrangements and area of these domains
depend on the growth temperature and surface
coverage. For example, at temperatures well below
T.* for a square lattice of 50% coverage, the
superlattice pattern will look like a checker board.
where every near-neighbor site of atom (vacancy)
is occupied by vacancies (atoms). This type of
arrangement can be envisioned for a mono-layer
growth in (100) orientation. T_* calculated using
Onsagar’s result for (100) surfaces and that using
an exact value of 0.35 ¢,/kp [20] for (111) orienta-
tions are given in table 1. We see that the calcu-
lated temperatures are well above the typical ALE
or MBE growth temperatures for these com-
pounds (except for (111) Ga terminated GaAs
surface). Hence the partially filled growth surface
is expected to exhibit superlattice arrangements
with atoms and vacancies.

In MBE growth of compounds, both types of
species (anion and cation) a; : present, and simul-
taneous growth of an anion-cetion double layer




92 S Krishnamurthy et al / Epuaxally grown semiconducior surfaces

can be expected. We extend our model to study
the double-layer growth of semiconductors with
zinc-blende lattice. The intralayer pair interaction
eoergies deduced for the single layer growth model
~re sull valid. The inter-layer anion-cation pair
interaction energies are simply E,/7n,, where 7, is
the number of interlayer near neighbor sites. We
define an anion stabilized growth to be the case
where relative anion and cation fluxes are such
that any exposed surface atoms are anions. When
the interaction between the atoms in the upper
layer and that in the lower layer is strong (com-
pared to kT,), the surfaces always grow in the
smooth limit. (100) surfaces of HgTe and GaAs
and all surfaces of Si are predicted to fall into this
category. However, when the interaction between
adjacent layers are not clways strongly attractive,
as in the case of (ﬁi) HgTe and (111) GaAs
surfaces, the nature of growth depends on whether
1t is anion or cation stabilized.

The free energy calculated in QCA. at a growth
temperature of 185°C. for Te and Hg stabilized
(111) surfaces is plotted respectively in figs. la
and 1b as a function of Te and Hg surface con-
centration. Each corner of this plot represents the
surface fully covered by the element noted there.
In ALE. growth takes place ‘along the sides.
Whenever the minimum occurs between the two
corners, that surface 1s predicted to grow in the
rough limut where atoms and vacancies randomly
occupy the surface sites. Whenever the minima
occur near the corners, the surface is predicted to
grow in the smooth limit with formation of nearly
perfect islands. In MBE where both species are
present in double-layer stochastic growth of com-
pounds, the above arguments are applied to the
free energy curve along the diagonal line connect-
ing the ongin and upper-right corner. Accord-
ingly, from fig. 1, we see that, while ALE growth
of Hg and Te layer takes place in the smooth and
rough limits respectively, MBE growth of Te
stabilized surface takes place in the smooth limit.
This is because the pair energy for Te(upper
layer)-Hg(lower layer) is strong, 0.9 eV [15,16].
However, the Hg stabilized surface grows in the
rough limit because the Hg in the upper layer is
weakly attracted to Te below (nearly 0 eV [15.16])
and atoms do not congregate into islands to maxi-
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Fig. 1. Free energy for (a) Te stabilized and (b) Hg stabilized
(111) surface of HgTe at 185°C as a funcuion of Hg and Te
surface concentrations.

mize the cation--anion pairs. Similar behavior is
expected in the growth of (111) GaAs surface.
These calculations were carried out only for
those cases where the interactios are attractive.
For the repulsive case, it is known that QCA with
pair interactions predicts incorrect phase diagrams
{21]. It has been demonstrated that the smallest-
sized cluster to get a correct phase diagram con-
tains four atoms in a fcc lattice [22]. Similar
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calculations with cluster variation method will
have to be carried out for studies of most CdTe
surfaces.

5. Conclusions

We have calculated intralayer and interlayer
atom-atom pair interaction energies using a
tight-binding Green's function method. These en-
ergies are then used in a thermodynamic model to
study the nature of growth surfaces. As the growth
temperature is varied, attractive interaction be-
tween surface atoms leads to smooth-to-rough
transition, and Si, HgTe and most GaAs surfaces
are calculated to fall in this category; the repulsive
interactions lead to superlattice ordered-to-dis-
ordered transition, and (111) GaAs and most CdTe
surfaces are expected to be in this category.
Smooth or rough surface growth is found to be
decided by inplane interactions in ALE growth
and by interplane interactions in double-layer
MBE growth. In our calculations of pair energies,
we considered only ideal surfaces. The critical
temperatures and other conclusions in this paper,
can, at best, be expected to represent the trends.
Nonidealities such as reconstruction, dimerization,
relaxation of adatoms and surface can lower
surface energy substantially [23-26). For quantita-
tively more accurate values, the effects of these
mechanisms on the values of (£, — E, ) and statis-
tica] approximation that are better than QCA with
pairs will have to be included.
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A Green’s funciion method is used to calculate the removal energies of constituent atoms
from various unreconstructed semiconductor surfaces. An efficient difference equation
approach within the second-neighbor tight-binding model is used. For a compound 4B,
binding energies for the 4 and B atoms on the (111), (111), (100), and (110) surfaces are
calculated. Energy to remove an atom from the nearly full surface, E, (where the

removed atom leaves behind a surface vacancy), and from the nearly empty surface, £,

(where the removed atom was isolated on the surface), is obtained. Results are presented for
Si, GaAs, CdTe, and HgTe. The surface sublimation energies are shown to depend on
surface coverage and do not exhibit a simple linear relationship to the number of bonds
broken, as is often assumed in modeling growth by molecular-beam epitaxy (MBE).
Although the anion and cation extraction energies depend on surface coverage and
orientation, when averaged over a double layer, they always sum to the bulk cohesive energy.
Moreover, E.— E, can be positive, implying effective attractive in-plane surface interactions,
or negative, implying effective repulsive interactions. E.— E, tends to be positive for

covalent and narrow-gap semiconductors, and negative for wide-gap and more ionic
semiconductors. Surface sublimation energies are important input parameters for the
modeling of MBE growth; their importance is demonstrated using a simple thermodynamic
growth model and results are shown to explain anomalies found in MBE growth of

HgCdTe.

I. INTRODUCTION

In recent years there has been considerable advance-
ment in the field of epitaxial growth of semiconductors,
with molecular-beam epitaxy (MBE) being one of the
most important techniques. Modeling of the MBE growth
process involves a description of the incoming and outgo
ing fluxes of atoms from the surfaces, as well as in-surfar -
migration and reactions among the constituents. An iia-
portant contribution to the out-flux arises from the subli-
mation of the constituents from the growth surface. At-
tempts to determine the activation energy for surface
sublimation processes have been made in a variety of ex-
periments on GaAs'™ and CdTe.*® Because the values
obtained depend on the experimental environmental
conditions,” the reported values differ substantially. More-
over, the experiments, in which the evaporation of many
layers is permitted, measure quantities related to bulk co-
hesive energies rather than to the surface-orientation-
dependent activation energies which are more relevant to
growth modeling. Yet in the modeling of MBE growth,
accurate values of the activation energies for the removal
of constituent atoms from various sites on a given surface
to the vapor are essential.'®!! [n this paper, we calculate
the surface sublimation energy (SSE) for various classes of
sites.

Several theoretical methods such as cluster methods,
slab methods, and Green’s function methods have been
used in the literature'>"'° to study semiconductor surfaces.
Both the cluster'*!* und slab'*'* methods approximate the
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semi-infinite bulk terminated at a particalar surface by a
finite number of atoms or two-dimensional (2D) atomic
layers, respectively. While first-principles electronic struc-
tures can be incorporated into these methods, doing so is
extremely time consuming, because the size of the matrix
involved in these calculations is often large as a result of
the range of the surface wave functions. Also, the calcula-
tions require taking differences between two large total en-
ergies. The present method differs in detail from other
Green’s function methods'®'® advanced for the study of
surfaces tn that we take full advantage of the symmetry of
the surface problem, and reduce the problem to an efficient
solution of a difference equation.?

In this paper, we use a tight-binding (TB) Green's
function (GF) method to calculate the SSE. The calcula-
tion of the SSE proceeds in two steps. First, the GF for the
ideal flat surface is calculated in terms of the bulk GF
using Dyson’s expansion. Second, the GF for the surface
with an atom either removed from or added to the ideal
surface is calculated in terms of the surface GF. Unlike the
cluster or slab methods, the size of the matrix equation to
be solved is determined by the size of the perturbation
Hamiltonian, and thus exploiting the in-plane periodicity
of the unperturbed surface, the resulting matrix is compar-
atively small. Additionally, the electronic contribution to
the total energy can be obtained from the change in the
density of states (DOS) which is calculated directly from
the unperturbed GF and the perturbation Hamiltonian,
thus eliminating problems associated with calculating
small energies by taking the differences between two large
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energies. The DOS is calculated as a continuous function
of energy, thus t.eating bulk and surfacelike states on an
equal footing. The GF is calculated using a novel and com-
putationally efficient difference equation approach devel-
oped recently by Chen.*’

We calculate SSE for two classes of cations and anions
for each surface. When the perturbation to the surface GF
involves the removal of an atom from an ideal surface,
leaving a surface vacancy behind, we refer to the process as
the surface sublimation from a concentrated surface. The
energy required to remove the atom in this limit is denoted
E_. When the perturbation to the surface GF involves the
addition of an atom to the ideal surface, thus beginning a
new layer of atoms, we refer to the inverse of this addition
process as the surface sublimation from a dilute surface,
and to the energy as £, Orientation-dependent E_ and
E, are energies required in modeling MBE growth.

The remainder of the paper i1s organized as follows.
The method of obtaining the Green's functions for the
bulk, the surface, and the surface with an additional atom
added to or removed from the surface is described in Sec.
I1. In Sec. III, calculated bulk and surface DOS and sur-
face sublimation energies of the constituent elements from
(100), (111), (111), and (110) surfaces of Si, GaAs,
HgTe, and CdTe are discussed. To illustrate the impact of
these energies on growth, they are incorporated into a sim-
ple growth model! in Sec. IV. Concluding remarks are given
in Sec. V.

Il. GREEN’S FUNCTION METHOD

The calculation of the SSE is divided into two parts.
First, the surface GF 1s calculated in terms of the bulk GF
(which is formulated in terms of 2D Bloch states). The
surface GF is calculated in terms of the bulk GF using a
difference equation technique.?® Second, the GF for the
surface with an atom added to or removed from the surface
is calculated in terms of the surface GF. The surface GF
calculation has also been applied to the calculation of the
cleavage energy,”’ and the following calculational proce-
dure for the surface GF also appears in Ref. 21; it is in-
cluded here for completeness, and to provide the ground-
work for the calculation of SSE.

The bulk GF is calculated as follows. Let Hy be the
Hamiltonian of the infinite periodic solid, with the corre-
sponding eigenvalue equation

(Hg—E)|¢¥)=0. (hH

For the present problem, it is convenient to decompose the
three-dimensional lattice into identical 2D planar slabs,
labeled by n, with their orientation determined by the par-
ticular surface to be studied. Each slab is in turn decom-
posed into unit cells, described by real-space lattice vectors,
I, parallel to the slab interface. We expand the wave func-
tions, |¥), in terms of 2D Bloch states, |mak,):

) = % 2 Cula)|maky). (2)
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Here 7 sums over the planar slabs and a sums over the
tight-binding basis functions within each unit cell. The
C,(a) are expansion coefficients to be determined. The
Bloch states are defined by

1
| n,ak,) = —m= S et imal), (3)
\'NS {

where the sum 15 over the two-dimensional lattice in the
nthslab, k is a two-dimensional Brillouin zone (BZ) wave
vector, and N, is the number of unit cells in each slab.

If the Hamiltonian contains only nearest-neighbor slab
interactions, then Egs. (1) and (2) reduce to the difference
equation

F'C,_, +AC,+ FC, _ =0, (4)

where the intraplanar and interplanar Hamiltonian matni-
ces 4, F. and F are, respectively,

Ay =(mak {(Hg—E)|ma'k,), (5a)
Foo=(mak, [Hgin + Lia'k.), (5b)
and
Foo = (mak |Hgln—Lak,). (5¢)
The general solution to Eq. (4) is given by*®
C,=2 ays,B, (6)
J

where r, and 3, are the jth eigenvalue and corresponding
eigenvector of the following characteristic equation:

(F™ +rAd +r°F)B=0. (7)

The a, of Eq. (6) are expansion coefficients determined by
the boundary conditions. Letting y=rf. Eq. (7) reduces to
a (2m x 2m) matrix eigenvalue problem

0 l ¥ ¥
(—F“F‘ —F-‘A)(B)='(B)‘ (8)

where m is the number of basis functions per unit cell. We
use a basis set of one s and three p wave functions or each
atom; thus m is four times the number of atoms in a unit
cell. For example, for a zinc-biende structure with planar
slabs chosen parallel to the (111) plane, the slab i1s chosen
to contain one cation and one anion layer; thus m=48. The
bulk GF, G?, can be obtained similarly by solving the equa-
tion

(Hy—E)G?=—1, 9)

where Hpis the bulk Hamiltoniar: and 7 1s the unit matrix.
The corresponding matrix equations in the planar Bloch
basis are

F'G_\, +4G., + FG: | ,=~I (10a)
and
ﬁG,B;,_L"%-AG,B"'"-FFGZ_L”:O, (IOb)

where the subscripts on G are layer indices. From the the
general solution to Eq. (10), the GF of interest can be
written as
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G®,=F(QXQ™'—PRP- )], (11a)

G, ,=PR™"P'G,, m>n, (11b)

and

Gg.n=QXm—"Q—lG:n' mcn, (]1C)

where X and R are diagonal matrices containing eigenval-
ues of magnitude greater than and less than unity, respec-
tively, and Q and P are the corresponding eigenvector ma-
trices obtained from Eq. (8). Finally, in the usual manner,
the density of states (DOS) can be calculated from

) ,  (12)
where 7 is vanishingly small.

From the bulk layer GF, the surface GF is obtained
using Dyson’s expansion. The surface is created by the
bond-cutting method, in which the interactions between
two semi-infinite bulks are set to zero. Hence, the Hamil-
tonian, Hg, for the two semi-infinite bulks separated be-
tween planes 0 and 1, is given by

1 2 )
¥ Y G2, (k,.E+in)

-1
pa(E) =— Im Tr( &

Hs=Hyz—F—F". (13)

Then the intraplanar surface GF, Gf_ - 1S given by
Gan=Grn—=GaoF" (1 + GLoF')"'GY,
Finally, the surface DOS is given by

(14)

), (15)

(16)

n -1 1 s )
pS(E)=—;- Im Tr(ﬁJ K21 G, . (kE + in)

and the corresponding change in DOS

pslE)= 2 (p5—pp).

In Eq. (16), the summation over all layers n3/ 1s found to
converge rapidly away from the surface. Note that in the
calculation of pg both bulklike and surface-localized states,
which show substantial dispersion as a result of the in-
plane periodicity, are treated on an equal footing.

SSE values are calculated for both the dilute and con-
centrated surface coverage, as defined in Sec. I. For the
dilute surface, a constituent atom is placed on the surface
with bond lengths and angles corresponding to the bulk
equilibrium values. Only first-neighbor interactions of the
adatom with the surface atoms are included, a good ap-
proximation for covalent semiconductors. The full Hamil-
tonian for the surface with an isolated adatom, H,;, can
then be written as

Hi=Hs+ 2 (Voo+ Vos+ Vo), (17)
!

where V;  is the matrix element between sites /' and /".

The sum goes over all nearest-neighbor sites, /, of the atom

added at site 0. The change in the GF resulting from the

addition of an atom to the surface is given by
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AGIE)= Y Gy (E)V;oAgy Vo rGr AE), n=0,
r.r
{18a)

and

E—Vy X
r.r

-1
2g3(E) = VarGirEWVro) - UI8b)
Note that subscnipts for Green's functions in Eq. (18) are
now site indices for a particular layer, and n 1is the laver
containing site /. The corresponding change in DOS is then

simply given by

Ap,(E)=—7T—l Im Tr( Z D .kgz,) , (19)
n !

where the sum is over all layers », and is found to converge
rapidly away from the surface. The sum over all sites
within a layer, n, can be obtained exactly by writing the
local GF in terms of Bloch Green's functions of Eq. (14)
and computing the two-dimensional BZ integration. The
change in DOS is given by

~1 1
Ap(E)=—1Im Tr{Ag8_0+ ) N )} le.,(k;,E)
T n S k

X( > Vf.oAgg.oVo.r)Gls.n(k.s-E)]] ,
P

(20)

where we have reintroduced the slab GF. Because we are
interested in the removal of an isolated atom from the
surface, the negative of Eq. (20) enters into the calculation
of the SSE for a dilute surface.

In the other extreme case, in which an atom is re-
moved from a nearly full surface (the concentrated limit),
the surface sublimation energy 1s obtained by letting the
site diagonal matrix elements of the atom at site /=0 go to
infinity. For this perturbation, the change in the DOS is
given by

-1
4p(E)=—1Im Tl’( ; Gro(Ggo) ™ leo./)

1 3
=7—TImTra—E[1n(Gg_0)]._ (21)

ill. SURFACE SUBLIMATION ENERGIES

We define surface sublimation energy as the difference
between the total energy of a surface plus an isolated free
atom and the surface with that atom bonded to it. In the
TB model, the total energy is written as the sum of the
electronic energy of the occupied state and the repulsive
energy FV, between the nearest-neighbor pairs.22 The
change in the electronic energy is calculated from the
change in DOS, Egs. (20) and (21) above, via

£,

AE, = f Ap,;(E)dE. (22)
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The integral over energy extends to the highest filled state,
E,, which is determined by the charge neutrality condition
that

£, W
> =(f p;dE—f/ p'[,dE)z:tA, (23)
n - x - x

where ff is the highest filled bulk state (the valence-band
edge 1n our zero-temperature calculations) and + or
— sign has to be used, respectively, for cation- or anion-
terminated polar surface. The quantity A is determined so
that there 1s no net potential due to alternating parallel
planes of charged anion and cation layers in the case of
polar surfaces. A is (Q.—3)/4 per dangling bond per unit
cell, where Q. is the net charge on the cation in the bulk.
Notice that A is zero for a (110) surface because the num-
bers of anion and cation dangling bonds on this surface are
equal. £, will in general depend on the particular surface
and may differ for the complementary anion and cation
termination of a polar surface. For an ideal cation-
terminated surface, E,, will be at the energy level corre-
sponding to the cation dangling bond, which is normally
near the conduction-band edge. Similarly, for an ideal
anion-terrnunated surface, £, will be at the energy level
corresponding to the anion dangling bond. which is nor-
mally near the valence-band edge. The bond length and the
interatomic and intraatomic matrix elements for the atoms
on the surface are assigned their bulk values, and only
nonreconstructed surfaces are considered. This calculation
can be easily extended to account for bond-length relax-
ation and surface reconstruction by using a larger unit cell.
While these approximations limit our accuracy, it is the
first step toward evaluating these SSE realistically.

The change in DOS due to creation of a surface is
calculated for the anion- and cation-terminated (111),
(111, (100), and (1 10) surfaces for elemental silicon and
for GaAs, CdTe, and HgTe compounds. In all the calcu-
lations, second-neighbor tight-binding Hamiltonians with
four orbitals per atom are used to obtain the bulk elec-
tronic structures.’>"> Slabs containing two atomic layers
are defined for each surface and the resulting size of the
GF matrix is 8 X8 for the (111) and (100) surface orien-
tations. In order to hold the interplanar coupling to a first-
neighbor layur, the size of the basis for the (110) direction
1s increased to contain four atoms per unit cell, resulting in
a 16X 16 matrix. An analytical continuation method>® is
used to simplify the 2D BZ integration.

As an example, we present detailed results for the
(100) and (110) surfaces (cleavage surfaces) of GaAs,
and general results for the SSE of Si, GaAs, CdTe, and
HgTe. The bulk DOS for GaAs, obtained from Eq. (12}, is
shown in Fig. 1. The DOS calculated using the difference-
equation approach presented above is in excellent agree-
ment with that obtained directly from the band structure.?*
The change in DOS between the surface and bulk, calcu-
lated from Eq. (16), is shown in Fig. 2 for (a) an anion-
terminated and (b) a cation-terminated (100) surface of
GaAs. The layer DOS was found to converge to the bulk
value by the fifth slab and thus the layer sum in Eq. (16)
has been carried out over only the first four slabs from the
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FIG 1. Bulk DOS for GaAs in the unus of states/electron volt cell
Energy 1s measured from the top of the valence band.

surface. In Fig. 3, the change in DOS between the surface
and bulk in the vicinity of the band gap for the (110)
GaAs cleavage plane is shown. Note that two states are
introduced, an anionlike state at the valence-band edge and
a cationlhke state in the midgap region. The cleavage ener-
gies calculated from the difference between the bulk and
surface DOS for the (110) surface for GaAs and the (111)
surface for silicon are found to be in good agreement with
experiments.’' Finally, the change 1n DOS due to the re-
moval of an isolated anion or cation from the GaAs (100)
surface in the dilute limit is shown in Figs. 4 (a) and 4(b),
respectively.

The change in electronic energy of the system due to
the removal of an isolated atom from the surface is calcu-
lated from Eq. (22), with Ap,(E) given by Eq. (20). If the
repulsive energy gained by breaking a bond is V), the sur-
face sublimation energy for an atom in the dilute limit 1s
given by

Ed=AE:le + nbVO-eamm' (24)

Here n, is the number of bonds the adatom makes with
the surface and €, is the electronic energy of the free
atom. ¥} is chosen so as to yield the correct bulk cohesive
energy of 0.82, 1.03, 1.63, and 2.32 eV, respectively, for
HgTe, CdTe, GaAs, and silicon. The SSE for an atom from
the concentrated limit is calculated in a similar way, but
with Ap,(E) in Eq. (22) replaced by Eq. (21).

SSEs of anions and cations from various semiconduc-
tor surfaces in silicon, GaAs, CdTe, and HgTe are given in
Table 1. We note several features of the SSEs: (1) the SSEs
are sensitively dependent on the crystal orientation; (2) in
general, they do nor vary linearly with the number of bonds
being made to the surface; (3) the SSEs for cations and
anions differ and are orientation dependent; and (4) they
vary considerably between the dilute and concentrated
limit, even for the (111) and (100) surfaces where there
are no first-neighbor in-plane bonds. The first two points
are extremely important to the modeling of MBE growth,
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FIG. 2. (a) Difference between the surface DOS and bulk DOS for the
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surface DOS and bulk DOS for the Ga-terminated (100) surface for
GaAs. In Figs. 2-4, the charge in DOS is the number of states per elec-
tron volt per cell summed over all layers.

n

where a linear dependence of the surface bonding energies
with the number of bonds being made is commonly
assumed.?’ Because the SSEs do not exhibit this simple
linear variation with the number of bonds being made to
the surface, the growth properties based on these energies
are expected to differ substantially from those predicted
using a linear variation (Sec. IV). Although the energy
required to remove a cation or anion differs from that de-
duced from the bulk cohesive energy, we find that average
energy per bond for the removal of an anion plus a cation
layer equals the bulk cohesive energy, as it should.
Intuitively, one would expect E. > E,. The removal of
an atom from the concentrated limit, in addition to break-
ing interlayer bonds, requires the breaking of in-plane sur-
face bonds which are first-neighbor bonds for the (110)
surface and second-neighbor bonds for the other surfaces.
Even in the absence of first-neighbor bonds on the surface,
the surface dangling bonds in the concentrated limit inter-
act to form a partially filled band, which lowers energy.
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FIG. 3. Difference between the surface DOS and bulk DOS near the band
gap for the (110) surface for GaAs.

When a surface atom is removed, the removal of an elec-
tron from these broadened surface states will in general
require more energy than if the dangling states were iso-
lated, as in the dilute case. As seen from Table I, this
conventional interpretation explains the trends observed in
silicon, HgTe. and most cases in GaAs. However, for other
cases, we find that E, is smaller than E,

In order to understand the mechanisms that drive
some semiconductors to have £, < E,  we examine the na-
wre of the anion and cation surface states. Notice that
E. < E; occurs only for polar surfaces in semiconductors
with a large band gap.

As an illustration, we choose the (111) surface of
CdTe where E_is less than E,. The surface density of states
for two ideal surfaces, the Cd- and Te-terminated (111),
are shown in Fig. 5. For an unreconstructed surface, some
of the surface states normally lie in the fundamental gap.
Compounds have both cation- and anion-derived hybrid
surface states, where the cation-derived most often lie
higher in energy. The energy separation between the peaks
in the DOS in the band-gap region is related to the energy
difference between hybrid states, and thus the peak sepa-
ration is larger in the II-VI than the 111-V compounds.

Now let us consider the removal of a Cd atom from a
(1T71) surface in the concentrated limit. The highest occu-
pied surface level E,, is at the cation surface state energy,
1.25 eV above the valence-band maximum. When a singly
bonded cation is removed from the surface, a surface state
from the anion previously bonded to the removed cation is
created, and three cation surface states are destroyed. The
surface density of states for the isolated anion surface state
created in this process is similar to that shown by dashed
line in Fig. 5 for the pure anion-terminated surface, with
only minor differences in the widths and heights in the
peaks. Because this anion surface state lies near the top of
the valence band, the electrons from the cation surface
states will transfer into this level. This process reduces the
energy of the final configuration, and E. for removal of a
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cation in this concentrated limit is correspondingly
reduced. In the present case, the difference in the reduction
in energies due to this charge transfer effect outweighs the
surface state broadening effect, resulting in E. < E;. How-
ever, for an isolated cation removed from the (111) anion-
terminated surface, E,, is at the top of the valence band,
which is very close to the newly exposed anion surface
state. Thus, in contrast to the concentrated limit, there is a
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FIG 5. Density of dangling hybrid siates of anions (dashed) and cations
(solid) for (111)B-oriented CdTe. E,, is the energy of the highest occu-
pied level for a cadmium-terminated (111)8 surface.

negligible reduction in E, due to the charge transfer effect.
Note that these charge transfer processes are reversed for
surface sublimation of anions from the (111) surface. Since
three bonds are Lroken, more electroas are involved in the
reversed spillover and the difference between E; and E, is
correspondingly larger.

We conclude that the charge transfer from the cation
to anion surface states w.i increase E; and decrease E,
and thus always reduces the difference, E,— E,. The mag-
nitude of the charge-transfer effect depends on the amount
of charge transferred and the separation between the rele-
vant energy levels. Whenever this effect is substantial, E,
can become smaller than E,.

In an elemental semiconductor like silicon, no transfer
is expected and E, is always expected to be larger than
E,, as is observed. In GaAs, although a charge transfer is
present, the energy difference between the E, and the
newly exposed dangling bond state is very small, resulting
in a reduced charge transfer effect. As a consequence,
E.—E, is reduced and, in general, remains positive. Owing
to an increased ionicity in II-VI compounds, the energy
separation between the dangling states is large. As illus-
trated above, the effect of the charge transfer is substantial
in CdTe and in most cases causes E_ to be less than E,
Although HgTe is a II-VI compound, the charge transfer
does not occur because it is a semimetal with no forbidden

TABLE 1. Orientation-dependent SSE and the highest occupied level (measured with respect to the top of the valence band). All energies are in electron

volts. 7 is the number of bonds with the layer below that are broken.

Si GaAs CdTe HgTe
Removed

Orientation atoms n E, E, E, E, E, E, E, E, E. E, E,; E,
(111) a 1 0.0 2.5 4.6 04 2.3 38 0.7 39 4.2 0.0 1.8 38

¢ 3 0.0 4.2 6.4 0.55 3.2 33 1.6 2.7 0.6 00 -03 1.1
(I 1) a 3 0.0 4.2 6.4 0.0 4.6 5.0 0.0 5.2 2.1 0.0 28 2.8

c 1 0.0 2.5 4.6 1.3 3.3 2.7 1.6 2.2 3 0.0 -0.2 0.3
(100) a 2 0.0 37 5.6 03 34 4.7 0.7 50 2.6 0.0 24 31

c 2 0.0 37 56 0.1 2.6 3.6 1.6 2.1 0.1 0.0 -0.2 1.0
4025 J. Appl. Phys_, Vol. 68, No. 8, 15 October 1990 95 Knshnamurthy et a/. 4025




gap. The dangling states for HgTe are resonant in the band
and E,, is always at the conduction-band edge. Because the
cation surface states reside in the conduction band, they
are never occupied and consequently a charge-transfer ef-
fect is not present. Thus for HgTe, £, is always larger than
E, In general, the reduction in the difference of E_ and
E, due to the charge transfer is expected to be large for all
wide-gap 11-VI compounds.

The relative magnitude of the surface energies can
have profound consequences on the growth properties of
the semiconductor crystals. From the difference between
E, and E,, an effective surface pair interaction can be cal-
culated. When E, < E, the effective surface interatom pair
interaction is repulsive and the atoms can decrease their
enthalpy by maximizing their interaction separation. When
the effective surface interatom pair interaction is attractive,
i.e., E. > E, the isolated atoms can lower their enthalpy by
coalescing and forming islands. In both cases, the actual
configuration of atoms in equilibrium on the surface will be
determined by total free energy. Two types of phase tran-
sitions can occur depending on whether E, > E; or E,
< E, When E, > E, the phase transition corresponds 10
the spinodal decomposition of surface atoms and surface
vacancies. When E, < E,, the phase transition corresponds
to an order-disorder transition, where the ordered struc-
ture is a superlattice between the atoms and vacancies on
the surface. The particular surface superlattice arrange-
ment will depend on the growth temperature, growth sur-
face orientation, and surface atom concentration. For a
special case that includes relaxation, it has been demon-
strated by Chadi,™® in agreement with experimem,” that a
superlattice will form at 1 Ga coverage of a (111) surface.
We predict small attractive interactions in this case, but
relaxation could change the sign to agree with Chadi’s re-
sult.

From Table 1 we conclude that silicon, HgTe, and
most GaAs surfaces will exhibit spinodal decomposition
while most of the CdTe surfaces and the singly bonded
gallium-terminated (111) surface will undergo an order-
disorder transition. The actual nature of a surface during
growth will be determined by the growth temperature with
respect to the critical temperature. We are currently cal-
culating the critical temperature for the various order-
disorder transitions.

IV. DISCUSSION

1t is difficult to compare the calculated surface subli-
mation energies directly with experiment. Experimental
values of the sublimation energy of gallium from the (100)
GaAs surface'™® vary from 2.9 to 4.8 eV and for the cad-
mium and tellurium from the CdTe (100) surface, values
vary between 5 and 4.7 eV and 04 and 2.1 eV,
resp4.=:c:tive]y."‘8 These values are normally obtained from
the slope of an Arrhenius plot of excess partial pressure of
one constituent versus 1/7. The apparent discrepancy in
the experimental values can be explained even using the
bulk cohesive energy in the equilibrium partial pressure
expression. When the cations vaporize as atoms and the
anions as diatomic molecules, the product of equilibrium
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-partial pressures of constituent materials can be obtained
in terms of temperature 7, atomic (molecular) mass m,
vibrational energy #fw,, rotational energy B, and cohesive
energy E,. It s given by

’.Z,—Am(I\'T)'V2 (4:makT)3/‘

N _ (L n
A I

. | 12
X(ATAT) o~ EVAT (25)

fiw B,

where subscript a(c) denotes anion (cation) and super-
script e denotes equillibrium value. For known values of
applied partial pressures, P/ and P/, the excess pressure
can be calculated as function of 1/T. The slope of Arrhen-
ius plots calculated using this analysis falls within the
range of experiments. But, because the slopes thus mea-
sured are dependent on the uncontrolled overpressures of
the constituents, as pointed out by Heckingbottom,® these
slopes are not a basic property of the system. Therefore,
activation energies deduced from these experiments depend
strongly on particulars of the experiments and. hence, the
SSE calculated in this paper cannot be compared to exist-
ing experimental values. Yet, the pressure and
temperature-independent activation enthalpies calculated
here are required input for MBE growth models.

To illustrate the use of the surface sublimation ener-
gies, we examine the MBE growth of Hg,_ ,Cd,Te for
small x. and demonstrate the failure of the cohesive energy
in explaining one important experimental result. We do
this using a simple model for MBE growth which encom-
passes only the necessary features to demonstrate the use of
the SSEs. Qur calculations predict small mercury SSE for
all HgTe surfaces, in agreement with the experimental ob-
servation that Hg, _,Cd, Te at low x is especiall: difficult 10
grow and requires a large flux of mercury. The calculated
values of the SSEs are nearly zero for the dilute surfaces,
indicating that the nucleation of new mercury layers is
especially difficult. It has been experimentally observed
from MBE growth at 185 °C that, for a given growth rate,
the (111) surface requires an order of magnitude more
mercury than the (111) surface.”® We use our calculated
values of the SSE in a simple growth mode! to study the
corresponding trends. The growth model to be described
here is similar to that proposed by Galliard.*" An improve-
ment over the previous work is the inclusion of the change
in surface entropy due to the evaporation of an atom from
the surface. In this model, the growth rate R is a difference
between incoming and outgoing terms:

(1=x ) hg—x2Oh/ (1= X,) =R,

Xalfe— (1-x3)05/x,=R, (26)
where a is 4 or B corresponding to the (111) or the (11D
surface, x, is the fraction of the surface covered by mer-
cury, Jy, and Jy. are mercury and tellurium fluxes, respec-
tively, and @y, and O, are, respectively, the mercury and
tellurium evaporation rates. This set of equations can be
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m (111)4 and (111)8 directions, plotted as a function of tellurium par-
tial pressures and the growth temperatures in steps of 5 °C.

solved for x, and J}j, for a given growth rate and various
values of the tellurium overpressure and growth tempera-
tures.

The evaporation rate @ is assumed to be equal to
ve E*T where the escape frequency is calculated from the
spring constant of HgTe. The growth rate is assumed to be
I um per hour. The orientation and coverage-dependent
SSE are used in the evaluation of the ratio of Jﬁg/.lﬁg for
various values of tellurium overpressure and growth tem-
perature. The calculated ratio Jﬁg/.lgg is plotted in Fig. 6 .
It can be seen that the ratio changes by an order of mag-
nitude when the tellurium pressure is increased from 3 to
10x 10™° Torr. Also, note that the ratio is sensitive to
growth temperature, particularly at low values of tellurium
partial pressures; these conclusions fall within the range of
the experiment.® In the only reported experiment,*’ the
tellurium partial pressure, while held constant, was not
recorded, so the measured ratio of 9 (at T=185°C) can-
not be compared directly with our calculations. However,
as can be seen from Fig. 6, a factor of 9 for this ratio occurs
in a reasonable range of the tellurium partial pressure. It
would not be possible to obtain this result assuming a lin-
ear dependence on the cohesive energies for the SSEs. In
addition, our calculations suggest that mercury incorpora-
tion can be increased by growing at low temperatures with
higher tellurium partial pressures. Limits will be set by
surface migration rates, here assumed to be fast compared
to layer growth rates.

V. CONCLUSIONS

We have used the second-neighbor TB Hamiltonian
and GF method to study the electronic structure of the
ideal surfaces and those with an isolated atom added to or
removed from the surface. A computationally efficient cal-
culation is made possible by using a difference equation
approach and analytical continuation technique. We have
obtained the SSE for various surfaces of HgTe, CdTe,
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GaAs, and silicon. The calculated values imply that the
SSEs do not increase linearly with the number of broken
bonds. Also, the SSE depends on the surface coverage. In
some cases, even when there are no nearest-neighbor sur-
face bonds, we find it easier to remove an isolated atom
than to remove an atom from a large island, which pro-
vides an additional reason to form islands. In other cases,
however, we find that less energy is required to remove an
atom from a concentrated surface than is needed when the
atom is isolated. We have used the calculated SSEs in a
simple model to study the ratio of mercury partial pressues
of (111) to (111) surfaces for a given growth rate. This
ratio is sensitively dependent on tellurium flux and growth
temperature, but our predictions fall within the range of
experimental values. We further predict that better incor-
poration of mercury is possible at low temperature with
increased tellurium flux.

Although the perturbation due to surface and adatom
is treated exactly in this GF method, the accuracy of the
calculated values should be improved by considering sev-
eral neglected effects, including self-consistency and sur-
face and adatom relaxation and reconstruction. It is known
from detailed calculations that reconstruction,’
dimerization,** and relaxation of adatom and surface-layer
lower surface energy.m'35 Although there is no simple re-
lationship between the surface energy and SSE. the values
calculated here will nevertheless change when these
nonidealities are considered. For example, Northrup®® has
shown that the preferred position for a silicon adatom on
the Si (111) surface (to which it is, ideally, to be single
bonded) is the T, site where it bonds to three silicon at-
oms. This rearrangement from the ideal to the singly
bonded site seems to increase SSE by 0.7 eV or so. If the
surface grows reconstructed, these nonideality-limited SSE
are the appropriate ones to use in modeling. While the
removal of the approximations mentioned earlier will re-
fine our reported SSEs, the underlying mechanism of
charge transfer will always be present. The magnitude of
effective surface interaction energies causes estimated sur-
face crder-disorder transition temperatures in excess of
typical MBE growth temperatures, and consequently must
impact the nature of the surface and its growth consider-
ably.
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The energy required to remove an atom from semiconductor surfaces is calculated using a Green's-
function approach. Contrary to intuition, we find that, in some cases, less energy is needed 1o remove an
atom from the nearly full surface than from a nearly empty surface. The results are explained in terms
of the relativc energies of anion and cation dangling bonds, and the charge transfers between them. The
deducted effective pair-interaction energies and their effects on surface morphology and growth perfec-

tion are discussed.

PACS numbers: 68.55.Nq, 68.35.Md

In recent years, considerable advances have been made
in the field of epitaxial growth of semiconductors, with
molecular-beam epitaxy (MBE) being one of the most
important techniques. Modeling of the MBE-growth
process entails a description of the incoming and outgo-
ing fluxes of atoms from the surfaces, as well as the in-
surface migration and reactions of the constituents. An
important contribution to the outflux arises from the
sublimation of the constituents from the growth surface.
Attempts to determine the activation energy for surface
sublimation processes have been made in a variety of ex-
periments on GaAs (Refs. 1-3) and CdTe.** Because
the values obtained depend on the experimental environ-
mental conditions,® the reported values differ substan-
tially. Moreover, the experiments, which permit eva-
poration of many layers, measure quantities related to
bulk cohesive encrgies rather than to the activation ener-
gics that are more relevant to growth and that depend on
surface orientation. Yet in the modeling of MBE
growth, it is essential to have accurate values of the ac-
tivation energies needed by the constituent atoms to es-
cape from sites on a given surface to the vapor.’

In this Letter, we present the energies calculated with
a Green’s-function (GF) approach for atoms removed
from isolated positions on the surface or from a nearly
full surface. The difference in sublimation energies in
these two limits is explained in terms of the energy
difference between the cation and anion dangling bonds,
and the charge transfers between those states. The ener-
gies affect surface order-disorder transitions and growth
perfection, as discussed.

We use a second-neighbor, tight-binding Hamiltonian
with four orbitals per atom to obtain the bulk electronic
structures.®! A tight-binding GF method is used to
calculate the surface sublimation energies (SSE). The
GF is calculated using a novel and computationally
cfficient difference-equation approach developed recent-
ly."! The bond length and the interatomic and intra-
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atomic Hamiltonian matrix elements for the atoms on
the surface are assigned their bulk values, and only non-
reconstructed surfaces are considered.

The calculation of these SSE proceeds in two steps.
First, the GF for the ideal flat surface is calculated in
terms of the bulk GF using Dyson’s expansion. Bulklike
and surfacelike states are treated on an equal footing,
and the density of states is calculated as a continuous
function of energy. The highest occupied state Ep,
which can differ from the valence-band maximum, is
identified by applying the condition that no net field ex-
ists in the ideal stoichiometric crystal. Second, the
modified GF for the surface with an atom either removed
from or added to the ideal surface is calculated in terms
of the ideal surface GF. The electronic contribution to
the total energy can be obtained from the change in the
density of states, which is calculated directly from the
unperturbed GF and the perturbed Hamiltonian. This
procedure avoids problems associated with calculating
small energies by taking the difference between two large
energies.

The surface sublimation energy is defined as the
difference between the total energy of a surface plus a
free atom and that of the surface with the atom bonded
to it. In this convention, the atoms with positive SSE re-
quire energy to go from the surface to vapor, and those
whose SSE is less than or equal to zero will give up ener-
gy in going from the surface to vapor. In the tight-
binding model, the total energy is written as the sum of
the clectronic energy of the occupied state and the repul-
sive energy between the nearest-neighbor pairs. We
demand that our energy parameters produce correct
bond length, cohesive energy per bond (0.82, 1.03, 1.63,
and 2.32 eV, respectively, for Te, CdTe, GaAs, and Si),
and band gap for the bulk. We calculate SSE for two
classes of cations and anions for each surface.

When the perturbation to the surface involves the re-
moval of an atom from the ideal surface, leaving a sur-
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FIG. 1. Density of dangling surface hybrid states of anions
(dashed line) and cations (solid line) for (111)-oriented CdTe.
E. is the energy of the highest occupied level for a Cd-
terminated (111)B surface.

bonded to the removed cation is created. The surface
density of states for the isolated anion surface state
created is similar 10 that shown in Fig. 1 for the pure
anion-terminated surface, with only minor differences in
the widths and heights in the peaks. Because this anion
surface state lies near the top of the valence band, the
electrons from the cation surface states will transfer into
this level.

As this process reduces the energy of the final
configuration, the SSE for removal of a cation in this
concentrated limit is also reduced. However, for an iso-
lated cation removed from the underlying (111) anion
surface, E,, is at the top of the valence band, which is
very close to the newly exposed anion surface states. The
reduction in the SSE from charge transfer is smaller
than that in the concentrated case just considered. Ap-
parently, the difference in the charge-transfer energies
between E; and E. outweighs the band-broadening ener-
gy gained in E. and results in E;> E.. The charge-
transfer processes are reversed for surface sublimation of
anion from the (111) surface. Since three bonds are
broken, more electrons are involved in the reversed
charge transfer, and the difference between E; and E, is
also larger.

We conclude that the charge transfer between the cat-
ion and anion dangling states will always increase Ey4
and decrease E.. The magnitude of this effect depends
on the amount of charge transfzrred and the separation
between the relevant energy levels. Whenever the effect
is substantial, E. becomes smaller than E; and an
effective repulsive surface-pair interaction results.

Because silicon contains two identical atoms in the
unit cell, no charge transfer is expected and E, is always
larger than E4. The surface-pair interactions are always
attractive. Although charge transfer occurs in GaAs, the
energy difference between the maximum occupied level
and the newly exposed dangling-bond state is very small.
The value of £, — E, is reduced to make the surface-pair
interactions weak and still attractive in most cases, but
the interaction is repulsive for the Ga-terminated (111)
surface. Because of an increased energy difference in the
hybrid states in 1I-V] compounds, the energy separation
between the dangling-bond states is large. In CdTe, for
example, the effect of the charge transfer is substantial
and causes E. to be less than E, for every case in Table |
except for anions on the (111)A4 surface. Although
HgTe is a II-VI compound, charge transfer does not
occur because HgTe is a semimetal with no forbidden
gap. In HgTe, the dangling states are resonant in the
band and the conduction-band edge is always the max-
imum occupied level. The cation dangling states are
never occupied and, consequently, charge transfer does
not occur and £, is always larger than E4. The reduc-
tion in the difference of E. and E, due to the charge
transfer is expected to be large for all wide-gap I1-VI
compounds.

The relative magnitudes of the surface energies have
profound consequences on the growth habits of these
crystals. When E. is larger than E,, the effective in-
teraction between the surface atoms is attractive and go-
ing from below the critical temperature to above it, the
surface will undergo a phase transition from smooth to
rough. The smooth surface will have islands while in the
rough limit, the atoms will occupy the sites randomly.
Well below the critical temperature, the islands contain
few vacancies. .

When E, is smaller than E,, however, the effective
surface-pair interaction is repulsive. At growth tempera-
tures below the order-disorder transition temperature,
the atoms on the surface will arrange themselves to max-
imize the number of atom-vacancy bonds, resulting in
superlattice arrangements. The preferred order superlat-
tice arrangements depend on surface composition. At
temperatures above the transition temperature, the ar-
rangement of atoms will be nearly random. We con-
clude from Table I that Si, HgTe, and most GaAs sur-
faces grow in the smooth-to-rough transition region,
while most CdTe and singly bonded Ga-terminated
(1T1) surfaces grow in the superlattice-ordered-to-
random transition region. The surface phasc is deter-
mined by the growth temperature. Hence, the surface
morphology is critically dependent on the nature and the
magnitude of the interactions between the surface atoms.

In this Letter, we considered only ideal surfaces and il-
lustrated that the charge-transfer mechanism will always
reduce the effective atom-atom interaction on the sur-
face. However, it is known from detailed calculations
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that reconstruction,'’™'® dimerization,'* and relaxation

of adatom and the surface layer lower the surface energy
substantially.'>'® Although the effective interaction de-
pends on the difference of E E4, effect due to these
mechanisms will have to be included for quantitatively
more accurate results. While the removal of the approx-
imations will refine our reported values, the underlying
mechanism of charge transfer will always be present.
For one special case, Chaid,'® in agreement with an ex-
periment,!” has demonstrated that a superlattice will
form at the relaxed 3 Ga-filled (111) surface of GaAs.
His predicted long-range order is mainly driven by the
same kind of charge shifts as those we find in our GF
method. The magnitude of effective surface energies
causes the estimated order-disorder transition tempera-
tures to be in excess of typical MBE-growth tempera-
tures and, consequently, must impact on the nature of
the surface and its growth considerably.

The financial support provided for this work through
ONR Contract No. N00014-88-C0096, NASA Contract
No. NAS1-18226, and AFOSR Contract No. F49620-
88-K-0009 is gratefully acknowledged.
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ABSTRACT

A single-and multilayer growth model is presented. Surface order-disorder transitions are
studied with the enropy calculated in the Bragg-William approximation and in the Quasi-
chemical approximation. A plausible explanation for high-quality growth obtained with energy-
assistance is given. The model has been extended to study low-temperarure epitaxial growth of
HgTe and CdTe on different surfaces. The relevant surface energies are evaluated in a Green's
function approach.

INTRODUCTION

The theory of surface order of solids is essential 10 an understanding of their growth
properties. The mechanisms dominating surface order depend on a number of factors, including
the crystal orientation, substrate temperature, and growth method. The atoms arriving at a
growing surface interact both with the underlying surface and with one another. Their mutual
interactions may cause them to undergo an order-disorder transition from a “rough™ to a
“smooth™ (or ordered surface) or from a “rough™ to a “superlattice” (SL) surface. In the smooth
limit, the newly arriving atoms tend to cluster into islands; in the disordered state, the atoms tend
to be randomly distributed [1], and in the SL-ordered state, the atoms and vacancies on the
surface form long-ranged ordered patterns. For a half-filled cubic surface, for example, one SL
pattern is a checkerbrard arrangement of atoms on the available sites. The temperature that
characterizes the ransition from smooth to rough surface is called surface roughness transition
femperature, T.. When the growth temperature T is smaller than T, the surface will be smooth.
The growth rates and crystal quality are expected to differ in these two limits.

The rough-to-smooth transition occurs when the effective interaction between surface atoms
is atractive, while the rough-to-SL transition is a consequence of repulsive surface atom-atom
interactions. Because repulsive interactions among surface atoms have not been previously
considered to be realistic, this type of order-disorder transition on the surface has not been weated
extensively in the literature.

In this paper, we first study the surface roughness for a cubic lattice by obtaining the surface
enopy contribution to the change in free energy in a random approximation [also called Bragg-
Williams approximation (BWA)], and in the quasichemical approximation (QCA) with pair
interactions. Based on the difference between their predictions, we suggest a plausible
explanation for better quality growth obtained with energy assistance. The surface roughness
model is then extended to study the surfaces of realistic semiconductors—HgTe and CdTe—
grown by atomic layer epitaxy (ALE) and by molecular beam epitaxy (MBE). The transition
temperatures and surface roughness for growth in various orientations are given.

SURFACE ROUGHNESS THEORY

Because of space limitations, the approach will be discussed in brief; the details can be
found in the literature for the single-layer growth mode! with BWA {1] and for multilayer growth
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model with QCA [2]. We begin by considering 2 monatomic cubic solid grown from a (100)-
oriented seed with a smooth crystal surface. The change in enthalpy and entropy are calculated
to obtain the change in free energy. The most probable configuration is obtained by minimizing
the free energy. The atoms arriving at the surface make one bond each with the layer below and
above, and four in-plane surface bonds.

In the mululayer growth model with QCA, we first identfy all distinct classes of pairs that
contnbute to the free energy. Secondly, we write the probability for occurence of each type of
pair. Then, using appropriate factors for indistinguishability of pairs, the entropy for different
layers is wrinten with appropriate constraints. The free energy is then minimized to obtain the
most probable pair disaibution. In this multilayer model, an atomic site in any upper layer is
allowed to be occupied, even if the site immediately below it is not occupied. In other words,
“over-hangs” are permitted. Although these configuratons are energetically less favorable, they
contribute to the entropy, and thus should be inciuded in the free energy. In this model, we have
four types of pairs: atom-atom, atom-vacancy, vacancy-atom, and vacancy-vacancy. For each
layer, there are nine vaniables (four interlayer pairs, four intralayer pairs, and one layer
concentration) and six constraints relating them. The minimization of free energy in two of the
remaining three variables can be carried out analytically. The numerical minimization in the
remaining one variable is then carmied out. The temperature at which the second derivative of the
free energy vanishes for the surface coverage of 0.5 gives the transition temperature, T.

The calculated layer concentrations in the three-layer growth model are shown in Figure 1
as a function of surface coverage averaged over three layers for three growth temperatures T), T
and T, (T} < T¢ < T7) by thick-dashed, dashed, and solid lines, respectively. The index on the
curves represent the layer number. AtX =1, 3N atoms have been added to the surface, where N
is the number of sites per layer. In this ronvention, Layer 1 is immediately above the seed
surface. We note that at growth temperatures near and above T, all three layers grow
simultaneously, but with x; > x; > x3. However, at temperatures below T, the uppe- layers do
not grow undl the lower layers are nearly full. In this limit, layer-by-layer growth takes place.

At temperatures well below T the atoms ariving at the surface cannot move and imperfect
growth results. The quality of the growth can be characterized by the fraction, yg, of atom-atom
pairs to the total number of pairs in a layer. yg has been calculated in the BWA and QCA.
Figure 2 shows that less perfect growth occurs in BWA case. However, if there is energy
assistance, where photons or ions provide enough energy to permit the atoms to move on the sur-
face, then the QCA entropy is more appropriate and the perfection improves (yq increases). The
reason for the difference between yg in these cases is evident: The BWA entropy is larger, and
therefore it emphasizes the drive toward complexity. This results in layers at a given coverage
with more imperfections. QCA, where the entropy is smaller, predicts that layers are more
nearly perfect.

When the substrate temperature is sufficiently low, the characteristic time constant for sur-
face migration is larger than the the equilibration dme for interaction of the surface with beam
and gas (thought of as a heat bath). Urder these conditions, BWA is more appropriate. How-
ever, if the surface mobility is enhanced with an energy assist, the effective time constant for the
migration is reduced (so that surface equilibration can take place faster than equilibration with
beamor gas bath), then the QCA is more appropriate. This is a plausible explanation for high
quality obtained in energy-assisted epitaxial experiments {3,4]. The energy assist in these experi-
ments is sufficient to allow the needed surface mobility.
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of average coverage.
ENERGETICS AND GROWTH MODEL F¢ R SEMICONDUCTORS

The model described in the previous section has been generalized to the case of diamond
and zinc blende lartices. Also, the energies of interaction between pairs on the surface and that
between layers has been evaluated, using a Green's function approach. We calculate the energy
to remove the atoms from ncarly empty surfaces, referred as the dilute case, and that to remove
the atoms from nearly full surfaces, referred as concentrated case [S]. The respective energies
are denoted Ej4 and E;. The calculations were carried out for the removal of anions and cations
from various orientations of Si, GaAs, CdTe, .nd HgTe. The details of these calculations will be
published elsewhere [S]. We report only HgTe and CdTe results here.

In the single-layer growth model, we consider three kinds of pairs: namely, atom-atom,
atom-vacancy, and vacancy-vacancy and their respective energies Egy, E,,, and E,,. The
number of effective bonds an atom makes to the substrate, 1, and the number of surface bonds.
N, must also be specified. The free energy and the surface-pair populations are obtained from
the effective energy E g, given by (E;y — (E4a+E)/2). Without calculadng E,,, Ey, or E,,, we
can find E¢¢ from the difference of calculated E; and E4, and 1 from Table I. In our
conventon, a negative E¢y indicates an attractive interaction between surface atoms.

In atomic layer epitaxy, grown from a free atom vapo- phase, oniy one type of atom species
(anion or cation) is present at a given time, and the growth is necessarily layer by layer. The
single-layer mode! developed in the previous section can be applied to study HgTe and CdTe
with the calculated pair energies. QCA is is used in the evaluation of surface enwopies. When
the pair interaction is atractive, the smooth-to-rough transition takes place, as the growth
temperature is varied near T,. However, when the pair interaction is repulsive, the surface is
either rough or the atoms are in a SL arrangement with vacancies. Then the order-disorder
transition takes place near a different T;. The preferred ordered SL arrangemerts are
composition-dependent; however, in regions of ordering, the surface will be arranged to
maximize the number of atom-vacanc¢ . airs. Calculated values of T are given for growth of
HgTe and CdTe in (111) and (100) direcuons in Table 1.
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Table I. Extraction energies and crincal temperacures.

CdTe HgTe
Atom/ Eg E. T Eq4 E. T,

Surface Layer - - [ev] [eV] [K] [eV] [eV] [K])
(11DHA a 1 6 39 4.2 710 18 38 4700

c 3 6 27 06  5000* -03 11 3300
(111HB a 3 6 s2 21 7400 28 28 0O

[ 1 6 22 1.3 2100* 02 03 1200
(100) a 2 4 50 26  S000* 24 3.1 1500

c 2 4 21 0.1 4200 -0.2 1.0 2500

In our calculation, the pair interaction is always atractive in HgTe and the temperatures
sk~wn in Table I indicate T, for the rough-10-smooth transition. However, the pair interaction is
1, ulsive for CdTe, except for the grow = of a singly bonded anion layer on the (111)B surface.
Temperatures T denote the rough-SL transition temperatures. Because the T, values are very
large, ALE growth of HgTe occurs mostly in the smooth domain limit and that of CdTe occurs
mostly in the SL domain limit.

In layers grown by MBE, both anion and cation atoms impinge on the surface at the same
nme and both layers can grow simultaneously. The way in which the layer grows depends on the
flux rates of the two constituents and their respective sticking coefficients. Hence, 2n
appropriately generalized multilayer model to that described briefly in the previous section is
applicable. For simplicity, we assume only double-layer growth. The interlayer pair interaction
energies are obtained from Eg and ng. The intralayer pair energies for each layer are obtained
from E_, E4, and ). With the surface entopy obtained in QCA, the free energy is calculated for
various values of anion and cation layer coverage. The effect of anti-site defects is not included.

Because of the repulsive intralayer pair energies, CdTe surface is expected to grow in SL
domains. Hence, in addition to random distributions considered here, one must ~onsider all
ordered configurations for a given concentration. This case is being studied in detail and will not
be presented here. However, the interlayer and inmalayer pair interactions in HgTe are attractive,
so the double-layer growth model applies to this system.

When the minima in the free snergy at a given temperature occur near 0 and 1, islands are
formed on the surface that are nearly fully occupied and the remainder of the area is nearly
empty. As the surface coverage is increasea, the islands gro-~ in <ize with a fixed vacancy cc.i-
centration until the layer is fully grown. The vacancies fill only at the end of the layer growth;
then the formation of the next layer takes place. These events are calculated by examining a
sequence of equilibrium arrangements. Realistically, kinetic effects will prevent all vacancies
from filling in one layer before the start of the next layer. Thus, we expect that island growth—
where the vacancy concentrations are low—is likely to correlate with high-quality material.
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Sequential double-layer growth is predicted to be the case for HgTe, for example, in (111)A
direction. In this case, at 185°C we predict smooth growth in ALE for both Hg and Te layers,
and in either Hg or Te stabilized MBE growth [6] we also predict smooth lay. - growth. At this
same temperature on the (111)B surface in ALE we find smooth growth fur the H layer, but
rough growth for the Te. Moreover, in this particular case, we find Te-stabilized MBE growth to
be smooth, and Hg-stabilized MBE growth to be rough. In principle, it is possible to find situa-
tons and temperatures where in ALE one layer grows smooth and the other rough, and in MBE
the layers grow rough for both stabilizations. This provides a rationale for the sensitivity of
material quality to stabilization type, and temperature.

CONCLUSION

We have calculated the excess free energy of the surfaces for addition of several layers of
atoms. The surface energies that enter the stadstical mechanics are found in a Green's function
approach. The entropy calculation employs a surface modification of QCA. While the calcula-
tion only finds the equilibrium arrangement of atoms for specified surface coverages, given rea-
sonable speculations about kinetic effects, we can appreciate how energy assist functions, in
principle, to irprove the quality of epitaxial layers; the phenomenology dominating HgTe
growth for different orientations; and reasons to expect differences between the MBE growth
habits of CdTe and HgTe. .
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The current status of ab initio methods to study the properties of solids is reviewed. During the
past ten years, a wealth of calculations have established that many properties of solids can be
accurately calculated from fust principles. Recent advances in methods now make it possible to
treat a number of practical problems in materials science within tolerable times and costs.

Practically every solid-state physics text begins by pointing
out the difficulty of solving the Schrédinger equation for
~ 10°" particles, and that numerous approximations are re-
quired to make progress. Twenty-five years ago, Hohenberg
and Kohn' established the framework for modern first-prin-
ciples calculations by proving that the total energy of a sys-
tem was a functional only of the electron density. This func-
tional, however, is unknown. A subsequent ‘local”
approximation” made it possible to cast the problem as a set
of independent particles moving in an effective “‘one-elec-
tron™ potential for which explicit expressions could be ob-
tained. This approach, now known as density functional the-
ory (DFT) and the local density approximation (LDA),
has evolved into a parameter-free theory capable of predict-
ing structural and electronic properties with reasonably high
precision.’ However, until recently, the computational
methods required to actually solve these equations were so
slow that even on large machines calculations have been re-
stricted to simple systems. e.g.. silicon and GaAs.® There has
been a significant advance in computational methods in the
last few years, making it possible now to solve problems
much more efficiently than previously.*® This constitutes
an impressive advance in science, but, perhaps more impor-
tant, a revolution in technology. Now it is practical in sys-
tems as complicated as HgTe, CdTe, and soon the alloys
Hg, .Cd,Te, tocompute. for example, native defect ener-
gies, " impurity substitution energies.”* impurity intersti-
tial energies,” and diffusion coefficients,” as well as the
simpler bond lengths, cohesive energies, and elastic con-
stants.'” Accurate calculations of defect electrical activity
and transport properties based on these parameter-free theo-
ries are within reach. This capability should have a dramatic
impact on device processing and performance design.

The purpose of this paper is to review the status of this
advance and to provide the reader with some insight into its
prospects. The nature of the analysis is illustrated schemati-
cally in Fig. 1. It begins with a trial density n,,. often a super-
position of free-atomic densities. Using the LDA (see Fig.
1), this density generates an effective one-electron potential
V., and a Hamiltonian, which in turn, generates an electron
density n,,. n,,, is mixed with n,, and the cycle is repeated
until self-consistency is reached, i.e., n,, = n,,. Coulomb
and magnetic interactions as well as relativistic terms are
included. The Schrodinger equation must be solved in terms
of a basis set. Two leading. generally applicable basis sets are
the linearized augmented plane wave (LAPW) "' and linear
muffin-tin orbital (LMTO) ' methods. For any basis set, the
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computational time for a solution using conventional tech-
niques is proportional to N ?, where .V is the number of basis
states per unit cell. The output is the wave functions ¥ (r),
and the corresponding electron density n_, (r).

The exact functional that generates V,, from n,, is not
known, and in practice it is possible to do this only within the
LDA, for which explicit expressions can be calculated. The
LDA has been shown to produce good valence band states®
in semiconductors and good structural properties in most
matenials, e.g., atomic volume, cohesive energies, and elastic
constants.'” The band gap and conduction band states are
less accurately predicted in LDA. However, it has recently
been shown that these properties can be accurately calculat-
ed using a technique called the “GW" approximation.'*
GW is the first term in a perturbation expansion of the exact
many-body Schrodinger equation. Very good optical prop-
erties have been obtained in semiconductors when the LDA
1s used as a starting pornt to calculate GW, the Green's func-
tion G and screen Coulomb interaction W.

Among the basis sets used to solve the Schrodinger equa-
tion. the pseudopotential method is the simplest because it
uses plane waves. Plane waves (PW) are suitable only for
smooth potentials as they are eigenfunctions of free elec-
trons, but they are unsuitable for systems with d electrons,
such as CdTe and HgTe. Even in a simple semiconductor
such as Si, 100 to 1000 PW are needed per atom, depending
on the precision sought. Because the computation time var-
ies as .V ', the direct application of this method is limited to
problems with relatively few atoms per unit cell. Car and
Parrinello® devised an improvement to this method in which
the Hamiltonian itself is allowed 10 evolve while iterating for
the eigenstates. The computation time for one iteration in
their method is proportional to NM °, where M is the number
of occupied states. This advance permits much larger sys-
tems to be treated, since M <.V in that method.

A second important method is LMTO. It employs a much
more efficient basis set with only ~20 orbitals/atom re-
quired to reach convergence. The LMTO method. until re-

Schrodinger Poisson Eqn.
H(Vin) —E‘mL— M;)'noul(;) _QEr_voul(F)

Until Vo = Vi

Fii.. 1. Self-consistency loop
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cently, employed the atomic spheres approximation (ASA)
in which within each iteration of the self-consistency loop
the potential i1s approximated by its sphenical average about
the ions and some interstitial positions (empty spheres).’
This approximation limited the applicability of the method
to problems of high symmetry; it excluded problems like
substitutional impurity atoms, or surfaces from those for
which the precision was limited by LDA. Two years ago, a
full-potential LMTO (FP-LMTO) was devised® that re-
moved the ASA, thereby opening a whole new range of ap-
plications. The Car and Parrineilo technique still works in
FP-LMTO but does not yield much speed enhancement be-
cause the basis set is already small. There is another advance
of value, however: the Harnis-Foulks functional.'*'* This is
a technique for selecting a density functional that is insensi-
tive to details of the electron density and obviates the need
for the self-consistency loop. The technique increases the
speed of calculations with precision still limited by LDA.

A concrete example of the speed of current calculations is
presented in Table I. The example selected is a calculation of
the tellurium antisite defect in CdTe using a supercell of 64
atoms. The quantities calculated are the substitution energy,
the impurity levels, and strain distributions around the re-
laxed antisite.

In this approach. the crystal is treated as a periodic ar-
rangement of supercells with one antisite in each cell. When
the cell size 1s large enough so the antisites no longer interact
with one another. then the calculated properties converge to
those of an isolated antisite. We find that a cell size of 32
atoms is often sufficient but the numbers in Table I are for 64
atom cells.

The estimated computation times required to solve this
problem on an Apollo DN10.000 computer. using a single
CPU are listed in Table [. This machine is small enough tossit
in a closet, costs < $100,000, and is run by our professional
staff. Its clock time is roughly 1/6 that of a Cray, but because
the Cray is a vector processor, it runs this kind of problem
about 30 times faster than the Apollo. Quoted times and
precisions are approximate, and four iterations to self-con-
sistency are assumed.

As vou can see from the table, conventional pseudopoten-
tial methods are out of the question for a problem with 64
atoms per unit cell. However, the Car-Parrinello (for

Tasee I Computational effort to calculate an antimite defect in CdTe using
a supercell approach (64 atoms/cell). Time is for an Apollo DN10.000.
single CPU. Times and precisions are approximate. Four iterations to self-
consistency are assumed.

Method Orbitals/atom Time (h) Precision (eV)

Pseudopotential® 0 10 000 0.2

300 <10 LDA"
LAPW 50 5 000 0.2

100 40 000 LDA"
Car-Parrninelio’ 300 1 000 LDA"
LMTO-ASA 13 100 0.5
LMTO-FP 22 500 LDA"

* Pseudopotential form unsuitable for d-band materials.
"LDA error is unknown but s expected to be about 0.1 eV,
* Unsuitable tor caleulating lattice refaxations,
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smaller problems) and LMTO methods are quite pracucal.
A time of 100 h, or about four days, for an ASA-LMTO
solution, on a machine that sits in a closet operating in the
background, is perfectly acceptable. Our machine actually
has three CPUs and can accommodate four, so if one person
is doing a production run it does not seriously affect the rest
of the group. If the Harris-Foulks functional 1s used, a factor
of four is gained. A time of 500 h for FP-LMTO requires
some patience, but even this is acceptable. Using an optimal-
ly vectorized and parallelized code can greatly reduce this
time:'® indeed, we are now testing an experimental version
of the ASA program that does this calculation in about 10 h,
using the three CPUs in parallel. We wish to emphasize that
problems involving 64 atoms per unit cell are well outside
the capabilities of earlier methods and remain time consum-
ing even using FP-LMTO. However, a problem dealing with
host material properties with only two atoms per cell, e.g..
the band structure or cohesive energy r,, (64/2)* = 3 x 10*
times faster, so instead of 500 h the results are obtained in
about one minute.

In the past, solid-state theory was able only to calculate
general trends of phenomena from first principles, or with
more accuracy predict interrelatioris between various obser-
vables, i.e., parametrize potentials: Parametrized potentials
generally can be trusted only in circumstances where the
local atom arrangement deviates little from the one for
which the parameters were chosen. Hence, for example, if
parameters are chosen to fit bulk properties, quantitative
predictions of surface reconstruction may not be trustwor-
thy. although the symmetry may be properly given. The new
ab initio methods reviewed here do not suffer from this kind
of uncertainty and. as a consequence, can be trusted to with-
in a given precision. This ability should be an invaluable help
in interpreting observations, devising means to circumvent
deleterious effects, and designing manufacturing processes.
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Abstract. We review the current status of knowledge of fundamental properties of
the alloy Hg, _,Cd,Te. The most vexing questions are about its correlation state.
Several different experiments now suggest it is highly correlated, but no theory
predicts this result. We also discuss other properties, including disiocations at
intertaces. the residual donor, worms, surface segregation and its impact on
passivation, and concentration fluctuations. The forces driving these phenomena,
where they are known, will be presented. Most of the paper focuses on the
following: correlations; native defects, formation enthalpies and entropies; native
defect equilibria with mercury gas and with tellurium inclusions; and self-diffusion
coefficient activation energies including its contribution from migration energies.
We will take advantage of new first-principles, high-accuracy calculations to heip
explain the experimental situation. The calculations predict that the main native
defects found in alloys equilibrated at low Hg pressures are Hg vacancies, while at
high Hg pressures they are Hg interstitials, and, surprisingly, Hg antisites.

1. Introduction

As we have been told in this conference [1], sophisticated
focal plane arrays (Fpas) of sizes as large as 256 x 256
elements have been demonstrated on Hg, .,Cd,Te ma-
terials grown epitaxially by several means on various
substrates. Control of the material and its processing is
reaching a stage where practical yields of arrays with
adequate performance for some applications are nearly
at hand, so these array costs are becoming acceptable.
While the community is now well into a manufacturing
phase, there remain many unanswered questions about
the nature of Hg, _,Cd,Te alloys, questions whose reso-
lution would improve the performance, yield and stabili-
ty of focal plane arrays. The purpose of this paper is to
review the current status of our knowledge of this alloy
system [2, 3], with the aim of suggesting potential
mechanisms for the uncertain properties and additional
experiments to test these hypotheses. We also will dem-
onstrate the merit of recently developed first-principles
computational methods [4] to help settle outstanding
problems associated with the material which will even-
tually lead to accurate processing and performance
models. Figure | depicts schematically the major issues
that will be addressed. They were selected because of
their potential impact on performance of Fpas. The figure
shows a passivated HgCdTe sample on a substrate. On
the right is a graph of a vertical composition profile
through one region of the sample, and on the left is a
t This work was supported in part by NASA Contract NAS1-18226,

ONR Contract N0O0014-88-C-0096, and AFOSR Contract 49620-88-
K-0009.

0268-1242/91/120C59 + 12 $03.50 © 1991 IOP Publishing Ltd

110

blow-up of a ‘microcluster’. The major topics identified
are point defects [2], correlations {3],‘'worms' [5], misfit
dioslocations [6, 7], substrates, extended defects [1],
inclusions [7], bulk concentration fluctuations [8] and
surface segregation [9]. Other topics such as metalliza-
tion [10], particularly to p-type material, could have also
been included in this list, but we limit our discussion to
those mentioned above. We begin by summarizing below
the most important aspects of each of these topics. A
selected set will be greatly expanded upon in later
sections of the paper.

1.1. Point defects

Most Hg, . ,Cd.Te alloys are Te rich as-grown [1, 2].
The excess Te is accommodated by Hg vacancies (desig-
nated Vy,,) or as Te solid inclusions (Te,) [7, 11]. The Hg
vacancies are shallow acceptors (possibly negative-U-
centre double acceptors) [12]. With the exception of
some MBE or MOCVD material, as-grown maternial is p-
type, both at room temperature and at 77 K [13, 14].
This material can usually be annealed at low temperature
(~ 250°C) in an Hg overpressure to fill the V,,, sites and
to dissolve the Te inclusions [7]. When this is done the
material converts to n-type with carrier concentrations
that are remarkably low, from a few times 10'*cm~3to a
few times 10'% cm ~? in high-purity material {14]. The n
dopant(s) (called the residual donors) are unknown.
There is evidence [ 14] that the principal residual donor is
an impurity rather than a native defect, but because it is
so pervasive the evidence in not completely convincing.
The residual donor concentration is unknown, uncon-
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Figure 1. Schematic features of HgCdTe alloys.

trolled, and sets Fpa limits for most operating modes.
Identification and control of the residual donor would
undoubtedly be beneficial. It has been demonstrated by
diffusion measurements that samples annealed in higher
Hg pressures contain Hg interstitials (Hg,) [15, 16], but
while they are likely to be donors, the electrical state of
an Hg, has never been directly identified. It has been
speculated that Te interstitials (Te,) and antisites (Tey,)
{17] are active recombination centres, but direct evi-
dence on their deep states is not available. The Hg
antisite (Hg;.) has not been previously suggested as a
high-concentration defect, but we will present arguments
in a later section that it may be present in concentrations
sufficient to . Yect devices [2].

So far we have mentioned only native defects, but
impurity doping is now being brought under control in
HgCdTe alloys. It has proved to be difficult to gain
control of both donor and acceptors, but methods are
now in hand. Well behaved impurities are In [18] on
cation sites serving as donors, and As on Te sites serving
as acceptors. They are inserted into the material during
epitaxial growth. Ion implantation and diffusion doping
have not been successful enough to be used in any
manufacturing process. Partial explanations for these
observations have been published, but refinements are
needed to make them quantitative. Many devices are still
made utilizing V,, acceptors and residual donors [19].

1.2. Correlations

It is now well recognized that semiconductor alloys of the
form A, _,B.C are rarely truly random. The A and B
atoms do not occupy their sublattice in the zinc blende
structure at random but are somewhat correlated, so
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there is a degree of short-range order, and in some cases
even long-range order [20, 21]. The principal driving
terms for correlations are bond length and chemical
difference between the constituents AC and BC. In
Hg,; . ,Cd,Te the bond lengths of HgTe and CdTe are
nearly equal, and the differences in their chemical terms
are also small, so that correlations are predicted to be
small. However, a high degree of correlation has been
deduced using five different experimental techniques (Te
nuclear magnetic resonance (NMR) [22], Raman spec-
troscopy [23, 24], infrared (IR) refiection spectroscopy
[25] and x-ray diffraction [26]). In the concentration
range near x = 0.25, the correlations are such that the
material is tending toward an ordered structure rather
than spinodal decomposition. Those findings may have
important consequences for devices, in particular if the
correlation state varies spatially. Such correlation fluc-
tuations may be a source of spatial variability of material
properties that occurs even if the composition is uniform,
with the varniation affecting the uniformity of the band-
gap, native defects and impurity concentration, mobili-
ties, etc. The magnitudes of such variations may differ
greatly from one property to another. For example, one
would expect relatively slight bandgap variations, but
rather more substantial differences in vacancy concentra-
tions and diffusion coefficients between regions of differ-
ent correlation states. This occurs because band
structures are properties that depend on site occupations
averaged over many lattice spacings, but vacancy for-
mation energies depend sensitively on the local atom
ar-angement around the vacant site. Both the expen-
mental and theoretical understanding of the correlation
state of HgCdTe need to be clarified. A more detailed
exposition of this problem is presented in section 2.




13. ‘Worms’

Matenal grown by LPE and MOVPE and annealed to n
type often exhibits low carrier concentrations ~ 10'3
cm " but with electron mobilities far below those of bulk
or MBE-grown matenals. If these materials are intention-
ally impurity doped to be slightly more n type. their
mobilities return to the high values obtained by other
growth methods. The currently accepted, aithough un-
confirmed, explanation for this phenomenon is that after
the Hg overpressure anneal, there are *“woodworm-like’
domains in the n-type material that remain p type [5].
These regions produce p-n junctions, and mobilities
measured in a Hall measurement exhibit a mixed effective
mobility that appears low. Impurity doping converts
these p-type worms to n type, so while there is still a
spatial variation of the doping concentrations, all the
material is n type so the measured Hall mobility is higher.
From the viewpoint of device limits, such impurity
doping has two potential deleterious effects. First the
minimum carrier concentration that can be used is
increased, and second there is a spatial variation of the
carrier concentration.

The worms are an appealing explanation for the
observed transport properties, but if the goal is to
improve devices made from LPE material then we must
understand why the worms form and how to eliminate
them during growth, or in subsequent piocessing. Do the
worms form because they correspond to regions of low
residual donors, or to regions where the V,_ formation
energies are small so that they do not anneal compietely?
Are the worms regions where the correlation state differs
from the remaining material? Why are worms more
prevalent in LPE or MOVPE material than in higher-
growth-temperature bulk material or lower-growth-tem-
perature MBE material? These and other questions are
still unanswered.

1.4. Misfit dislocations

Substantial misfit dislocation densities are alv s found
at the interface between Hg,_ Cd,Te and substrate
materials, e.g. Cd, _ ,Zn,Te, even when the two materials
are perfectly lattice matched [6, 7]. This situation also
occurs to a lesser but still significant extent at heterojunc-
tions. The reasons for these anomalous dislocation
densities remain to be determined. Because dislocations
have been demonstrated to have a deleterious impact on
minority carrier lifetimes, their effect is of particular
concern at heterojunctions where they degrade R,A4
products [27-29].

1.5. Substrates

This topic has been extensively reviewed in other confer-
ence papers [1]. The ideal substrate material would be a
large-area, Ir-transparent insulator that is matched to
the active layer by lattice constant, thermal expansion
coefficient and chemical potential, and on which signal
processing circuitry could be integrated. This idealization

112

HQCdTe status review

does not exist for Hg, _ ,Cd,Te, so compromises must be
made. The materials CdZnTe, and GaAs or Si with buffer
layers, are the current leading contenders.

1.6. Extended defects

A variety of extended defects, grain boundanies, anti-
phase boundaries, twin planes, threading dislocations,
striations, etc have all been directly observed in transmis-
sion electron microscope (TEM) studies or their existence
deduced from indirect evidence. Their impact on device
characteristics is not well established. but is certainly
never helpful. Because large-area FPAs are being made,
extended defects obviously are relatively dilute or ineffec-
tive in current device-grade material. However, improve-
ments are still possible.

1.7. Inclusions

We have already mentioned Te inclusions, and they will
be analysed more extensively in later sections of this
paper. They always have an array of dislocations around
them [7], are thought to serve as getters for some
impurities, and, as we suggest later, are likely to have a
non-equilibrium atmosphere of V,, and Te,, around
them [2]. When they are dissolved in the Hg anneal,
some of their associated dislocations climb to surfaces
{7] and are eliminated, although some remain; the
gettered impurities may remain as inclusions, and the
larger Te, inclusions may not be completely dissolved.
Means to avoid Te, inclusion formation in as-grown
material are most desirable.

1.8. Bulk concentration fluctuations

Even if an alloy is random, any segment in space has a
Bernoulli probability concentration distribution [30].
Thus one expects smail-scale concentration fluctuations
if there is nothing to suppress them. Because of the near
lattice match between HgTe and CdTe, a region of space
with a concentration that differs significantly from the
average produces no long-range strain field and is there-
for= not strain suppressed. The same effect has been
fcund in the lattice-matched alloy Al,_,Ga,As
{31]. However, in a lattice-mismatched material like
Hg,_.Zn,Te, such short-range concentration fluctua-
tions are suppressed. One consequence of this is that in
HgCdTe the exciton line is very broad, while in HgZnTe
it is narrow [8]. This effect should be particularly
troublesome in VLWIR material where the bandgap is very
small and fluctuations could produce semi-metal short-
ing domains.

1.9. Surface segregation

tL guireral, an alloy in equilibrium will not have a
uniform concentration near an interface [9]. This is most
easily understood at a vacuum surface where there are
dangling bonds. The material can minimize its free
energy by having the alloy species that makes the weak-
est bonds concentrate at the surface. Also in lattice-
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mismatched alloys the low-concentration species will be
driven to the surface by ’strain release’ because they
experience less strain energy at the surface than in the
bulk. In the near-lattice-matched Hg, _,Cd,Te alloy,
strain release plays little part, and therefore surfaces are
Hg rich. because Hg maxes weaker bonds to Te than
does Cd. Detailed predictions are that for x < 0.4 the
surface layer will have concentrations in the semi-metal
range returning to the bulk concentration within a few
atomic layers. Thus, in equilibrium. MWIR and LWIR
HgCdTe alioys will have Hg-rich semi-metal surfaces. A
CdTe-passivated HgCdTe alloy will have a uniform
concentration up to the interface because, both in the
bulk and at the interface, cations will be surrounded by
four Te atoms, so there is no driving force for segregation.
There is also little dr-ving force for segregation at a ZnTe
interface with HgCdTe. These conclusions are true only if
interdiffusion is prohibited across the interface.

Because there is less tendency for interdiffusion be-
tween ZnTe and Hg, _ Cd,Te than between CdTe and
the alloy, we have suggested that a few atomic layers of
ZnTe followed by a thicker CdTe layer should be a
superior passivant.

A CdS/HgCdTe interface should be Cd rich because
the CdS bond strength exceeds that of HgS by more than
that between CdTe and HgTe. A similar argument ap-
plies to oxides, except that the lattice-constant mismatch
becomes so large that dislocations and grain boundaries
begin to exert a much larger influence on the net result.

The rapid return of the interface concentration to its
bulk value (a few atomic layers) is predicted to occur only
above an alloy’s order-disorder transition temperatures
[3. 32]. Below this temperature, long-range large-excur-
sion concentration oscillations should occur. Because of
its expected low order-disorder temperature, one would
tend to discount such phenomena from consideration in
HgCdTe. However, the observations of large correlation
effects makes us pause. If these effects are confirmed, then
there may be comparatively long-range concentration
fluctuations adjacent to an epitaxial layer-substrate in-
terface, which may help to explain the anomalous misfit
dislocation densities that are observed. This suggestion
(first made by Spicer et al [10], but without a mechanism
identified) is highly speculative, and while concentration
oscillations driven by surface segregation and interface
boundary conditions are a natural consequence of a
higher than expected order-disorder transition tempera-
ture, there is no direct evidence to support its occurrence
at a HgCdTe/CdTe interface. Relevant experiments
would be helpful.

The remainder of this paper will be devoted to an
exposition of our current understanding of correlations,
native defects and their diffusion.

2. Review of correlations

We [21] and others [33-35] have demonstrated that
there are always correlations in alloy semiconductors.
Here we summarize our previous work, focusing atten-
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tion on those aspects that may help us to identify what
may be missing from the interactions dnving correlations
in HgCdTe. We consider an average population X, of
five-atom amnion-centred clusters including 16 bonds
(most others treat four bonds only). The population of
five-atom clusters of the form A, _, B, C can be shown to
be grand canonical ensembles of the form

i; = g; exp[(#ﬂ"; - CI)/kT]/q({C[j]}, “B) (I)

where the partition function is
J
ale;}. me) = 3 g;explugn; — e)kT] (D)
j=0

and g, 1s the degeneracy of clusterj = 0,1,...,J(d s J <
2%). n; is the number of B atoms on cluster j, ¢; is the
excess energy of cluster j relative to the virtual crystal
approximation (VCA) average Eyca = (1 — x)e, + xég
(called A; by Sher et al [21]), £, and &, are cluster
energies of the pure AC and BC compounds. k is the
Boltzmann constant and T'is the absolute temperature.

If the clusters do not have their normal counting

degeneracies
4
0 _
o ("i)

split, then we have g; = g the binomial coefficient, and
J = 4. The chemical potential is set by insisting that the
composition x is correct

4x=3 n %, 3)
]

If one makes a transformation to the reduced excess-
energies representation

n n
Aj=ej—-< —Zj)eo-z’s, (4)
(called A} by Sher er al [21]) then X; becomes

%; = g; exp[(ujng — 8)kT)/q({Aj}, up) (5)
where

Up = pp — (&, ~ &o)/4. (6)

Note that we have A, =A; =0, so at least two
members of the set {A;} vanish. More importantly, only
the reduced excess energies actually drive the cluster
populations. We shall see shortly that the energies of the
{A;} set are often five to ten times smaller than those of
the {¢;} set. Most of the strain contribution to the {¢;} set
subtracts out and contributes little to the x; values.

There is an additional effect. It can best be appre-
ciated when stated as a theorem: If

4
Aj=48;+nd  and g,=( )

n;

then J = 4 and
%= x0 = gl(1 — x)¢~"xm (M

where x? are the populations of a random alloy. Thus, no
matter how large the constant § may be, as long as the




energies A; vary linearly with the number of B atoms on
the cluster n; and the counting degeneracy is not split, the
alloy ts random. Strain energies from bond-length differ-
ences between the constituents, chemical energies and
electron-electron interactions all have some nonlinear
variations with n,. The degeneracy g/ is split by coherent
strains, temperature gradients, or anything that estab-
lishes preferred directions for the locations of A and B
atoms on a cluster. These splittings always establish a
preference for one type of cluster in a particular orienta-
tion [e.g. for a strain in the (111) direction, A;B with the
B onented along the (111) axis], and therefore drive
deviations of the {x,} set from {x?} toward compound
formation, and, if the splittings are large enough, toward
long-range order. The effect of the energies {A;} can drive
the {X;} set toward either compound formation or spino-
dal decomposition, depending on details.

The excess free energy of an A, _,B,C alloy can be
written as

AF = AE — TAS (8)
where the excess energy is
AE=MY ¢, ®)
j

with M being the number of clusters. The excess entropy
is

! M! 4-n M

[T 5773 041 = 0* ™) (10)

j=0

N!

AS = kln( NIV

with M; = x;M (see Sher et al [21] for the justification).
The total number of clusters M is related to the number
of Bravais lattice sites N in the crystal by M = N/4d fora
16-bond cluster (and M = N for a four-bond cluster).
Equations (9) and (10) can be rewritten for the 16-bond
cluster as

N
AE=Z<(1~— x)£o+xa,+ZAjij) (1)
i
and

AS = —kN(I-——x)ln(l—x)+xlnx

Z(x In%; ~ %; lnx°)>

J

N

Z

J

A—N—x+

= ln (A}, up). (12)

Note in the first equality in equation (12) that M/N is
| for a four-bond and 1/4 for a 16-bond cluster. In the 16-
bond cluster case, there is, as a consequence, an exact
cancellation of the (I — x)In(1 = x) + xIn x term by a
portion of the third term in the bracket. This occurs
physically because, in the 16-bond cluster, all the bonds
associated with a given substituted atom are in the
cluster. In the four-bond case, however, bonds from each
substituted atom contribute to four different clusters.
Several features of equations (11) and (12) are note-
worthy. First, ¢, and ¢, are functions of x but are
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temperature independent. For bond-length-mismaiched
alloys, they vary with x roughly as ¢, =~ e3x® and ¢, = &Y
(1 — x)?, so that we have
AE:N(Qx(l —x)+ZA,.\"J> (13)
I
where the mixing enthalpy parameter, Q is approxi-
mately

Q= [f + (e§ ~ ef)x)/4 (14)

and nearly x independent if ¢} x ¢J, as is often the case.
The second term in equation (13) is usually small com-
pared with the first and contains all the temperature
dependence. However, when equations (5), (12) and (13)
are inserted into equation (8) to obtain AF, a term in TAS
exactly cancels the second term in equation (13). Thus, it
is impossible to determine the temperature vanation of
AE from a measurement of AF. The expression for AF
becomes

AF = N[Q x(1 — x) + xup — $kTIn q({A}}, 43)].  (19)

The chemical potential yj is determined from equa-
tion (3), and both uy and g are generally temperature
dependent.

We have calculated {¢,}, {4}, up, {X; — x7}, AE(T)
and AF(T) for Hg, .,Cd,Te (figure 2) and Hg, . . Zn, Te
(figure 3) alloys. The energies ¢; for these figures were
calculated as discussed in detail in [21]. The 16-bond
cluster was attached to a rigid medium at the virtual
crystal positions in the third shell from the cluster centre.
The atom positions inside the third shell were adjusted to
minimize the strain and chemical energies. The energy ¢;
is the total energy of the 16 bonds with the atoms in their
minimum-energy positions. The variations of atom bond
lengths in different alloys are well predicted by this
method. The AF curves for Hg,_,Cd_Te show no tenden-
cy for an order-disorder transition in the temperature
range studied, but %; — x} values do deviate from zero.
Hg, ..Zn,Te does have an order-disorder spinodal tran-
sition with critical [36] temperature T, = 380 K. Al-
though Hg, _ Cd,Te shows significant deviations of the
X; from random alloy values for a sample equilibrated at
300 K, they are still not as large as those measured in the
NMR experiments, meaning that a major interaction may
be missing. However, at 300 K diffusion may be fast
enough in HgCdTe for the material to equilibrate even at
this low temperature (see the discussion in the next
section). The slower diffusion observed in HgZnTe may
be a distinct advantage, one that counters its above-
room-temperature critical temperature.

We have shown that only the small {A;} drive devia-
tions in the populations %; away from randomness.
Moreover, if A; = ngd is linear in n; the number of B
atoms, then despite the size of 4, the populations are still
random. Thus, effects that would otherwise be considered
small may compete with the larger energies retained if
they have the proper nonlinearity. We are examining
several possibilities in Hg, _ ,Cd, Te. These include effects
caused by screening in the composition range where the
alloy is a semi-metal, direct second-neighbour chemical
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Figure 2. Composition variation of correlation-state-dependent quantities for Hg, _ ,Cd,Te.

interactions treated in the context of Harrison’s model
[37], electron-electron Coulomb interactions driven by
polarity differences between the constituents, and com-
position variations of the elastic constants.

3. Native defects and diftusion

3.1. Daua fitting

There have been several measurements [15, 16] of the Hg
vacancy formation energy and Hg, Cd and Te tracer
diffusion coefficients. These measurements are always
fitted to a functional form

G = G (Pexp(— E'/kT) (16)

where E’ is interpreted as the activation energy and
G ,(P) is the infinite temperature limit of G. For vacancy
formation, G represents the vacancy concentration, and
for diffusion the infinite temperature diffusion coefficient.
It is assumed in the fitting process that G _(P) can be
viewed as a function only of the partial pressure P above
the sample of the species under investigation. However,
the pre-exponential coefficient always has a power-law
temperature contribution, i.e. a 7™ multiplicative com-
ponent. Because the measurements extend over a limited
temperature range, T, < T < T, usually have some scat-
ter, and the 7™ term varies more slowly than the expon-
ential, reasonable fits to the data are obtained. However,
when E’ values are quoted to more than one significant
figure, and G, to the proper order of magnitude, it is
important to include the T™ factor in the fitting proce-
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dure. Because we do not have access to the original data
we have corrected published numbers by assuming the
straight-line fits of In G versus 1/T were made through
the points T; and T, given by

T;'=4QT7' + T7YH

T =4(T7 +2T7Y) an
Then the correct expression
G = C(P)T™ exp(— E/kT) (18)

parameters are related to the fitted parameters by the
relations

E=FE - mkt (19
and
1 G T
—1 x .
- nCT;" T. (20)
where
t=(T; '+ ToH M (TY ) = T, 20

The approximate expression to t in equation (21) is
accurateif T, — T; < T,. Note that if m is positive E < E’
and if m is negative E > E'.

To illustrate the effect of these corrections, we have
examined the case of V,,, formation and diffusion and the
interstitial Hg, diffusion in Hg, ;3Cd, 5, Te. The mass

action equation for formation of V,,
HgTe< Vy, Te + Hg, 22)

where Hg represents a Hg atom on a Hg site, and Hg,
represents Hg in the vapour phase, has been analysed
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Figure 3. Composition variation of correlation-state-dependent quantities for Hg, _ ~Zn,Te.

using standard results in statistical mechanics. The diffu-
sion coefficient D is given by

1a*/n
”‘sz(ﬁ)

;l' = wp é.ﬁ

(23)
where
(24)

and where a is the hop distance, . is the mean free time
between hops, n/N is the fraction of lattice sites N
occupied by vacancies, w, is the presentation frequency
of an atom at the barrier between it and an adjacent
vacant site and f;. is the probability that an adjacent atom
reaches the intermediate position at the peak of the
barrier between it and an adjacent vacancy. (The prime is
inserted to remind us that this is not a normal interstitial
because it lies between two vacant sites.)

The quantity f;. is calculated roughly from the mass
action equation for the effective reaction

HgTe + Vy,, <V, Te + Hg, (25)

again remembering that the HgTe is adjacent to a Vy,, in
the initial state.

Then, the assumption that the Hg, in the interme-
diate position does not remain long enough for its
vibrational states to thermally equilibrate leads to the
power-law m values quoted in table 1.

There are several noteworthy features to the informa-
tion in table 1. First, the corrections to the activation
energies are 10 to 209, which is important if the second
and third significant figures quoted are to be taken
seriously. Second, note that for both vacancy and inter-
stitial diffusion in the Chen [16] and in the Tang and
Stevenson [15] work a larger activation energy corre-
lates to a larger pre-exponential factor. This occurs

Table 1. Corrections to experimental activation energies and pre-exponential coefficients.

Experiment E'(eV) G, em?s~") T, (K) T,(K t E(eV) c m
Vacancy formation

Vydyanath (13, 14] 2.24 400 650 495 2.01 1172
Vacancy diffusion

Chen [16] 2.40 47 x 105 P,,‘,' 400 490 441 2.08 32x 10~ P;o‘f 17/2

Tang and Stevenson [15] 2.10 487 x 10 P' 350 500 412 1.80 58 x 10" P! 1772
Interstitial diffusion

Chen {16} 0.54 1.1 %1077 P, 400 490 a1 0.64 55x 10" P, 52

Tang and Stevenson {15] 0.61 55x10"7 P, 350 500 412 0.70 24x10-" Pt -5/2
+ (cmz s~ 1) -T2
tem ~ T2
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because of the T™ dependence and the fact that the two
experiments were conducted over different temperature
intervals T, and T;.

The corrected numbers for the two groups are closer
together than the uncorrected ones in both cases, though
still not 1n perfect agreement. If we average the corrected
Hg diffusion activation energies of the two expenmental
groups we get

Epya, = 194 202V
Eppy, = 0.67 + 0.04¢V.

3.2. Native defects

Much of the following discusston has appeared pre-
viously in [2]. As mentioned earlier the doubly 1onized
cation vacancy is believed to be the dominant native
defect in HgCdTe that dictates the electrical behaviour of
the undoped material {13, 14]. We have recently reported
the results of calculations of native and impurity defect
total energies in HgTe, CdTe and ZnTe [18]. The ener-
gies for the formation of various native point defects in
HgTe are summarized in table 2; the HgTe solid and the
Hg in the vapour are used as reference energiest. These
calculations used the linearized muffin-tin orbital (LMTO)
method within the local density approximation (LDA) to
the exchange correlation energy. Large supercells con-
taining one defect per cell were repeated periodicaily, and
from the difference in total energies per cell, with
and without the defect, the defect formation energy was
calculated. To expedite the calculations, the energies
were calculated within the atomic spheres approximation
(asa) with a small (spd) basis set. In the asa, an approxi-
mation to the exact density functional is evaluated; as a
result, an error is introduced which is larger than in other
LDA methods [38], and relaxation energies cannot be
accurately calculated. Thus only those differences in
energies that are > 0.5eV here should be viewed as
significant for these caiculations.

An appropnate set of mass action constants for the
neutral defect reactions is also given in table 2. The

t A different reference is used here than was used in table 111 in [18].
An error appears in that table owing to the incorrect use of an
energy of 2E, per unit cell rather than 4E,. The defect energies in
table I in [18], from which the energies in table 111 were denved. are
correct.

notation 1n that table 1s as follows. Ag corresponds to an
A species occupying a B site, where | corresponds to an
interstitial and V to a vacancy. No subscript on a species
indicates that it 1s occupying the correct latlice site. e.g.
Hg = Hg,,. Square brackets [ ] refer to concentrations.
A subscript 'g” indicates the species 1n the gaseous. or
vapour, phase. and P, is the Hg vapour pressure. Most of
the reactions in table 2 involve the creation or destric-
non of one or more umit cells. Because the resulting
change in volume 1s accommodated at the surface, the
change in the number of unit cells will enter into the
determination of the defect equilibnum through the
surface entropy. Additionally, surface preparation and
orientation will affect the surface free energy. We have
assumed for the present that such surface effects are
neghgible, Le. that the volume expansions and contrac-
tions can occur with negligible changes in the surface
properties.

To complete the defect equilibnum determination
correctly we must include the equilibration of the elec-
tronic charges of the system. To do so we must have
knowledge of the dominant charge states of the defects
and their activation energies with respect to the neutral
defect. Such calculations are complicated by the fact that
most ab initio calculations of the electronic band structure
of semiconductors predict an incorrect bandgap, Eg. a
shortcoming of the local density approximation (LDA).
Therefore, we shall focus on the neutral native defects
here. and the established or expected charge states of
these defects.

In wide-bandgap matenials the equilibration of de-
fects can be substantially affected by the Fermi level; for
example the formation energy of a donor will decrease
when the Fermi energy is near the valence band edge.
since the donor electron can drop into a vacant state near
the valence band, thereby lowering the energy by ~ Eg.
Because we are discussing HgCdTe with a narrow band-
gap. we expect the Fermi effects to be small, but not
insignificant at high temperatures. Because of the small
conduction band effective mass. in n-type material the
filling of the conduction band states by electrons can shift
the Fermi energy significantlv. Combined with the in-
crease in the bandgap for the high temperatures at which
most defect studies are done. the effective bandgap can
be substantially larger than the usual 77 K bandgap
associated with a given concentration of HgCdTe.

Table 2. Defect reactions and formation energies.

Defect reaction

Defection concentration

Energy (eV)

£,,, + HgTe Vv, Te + Hg, (Vigl = P,;Q‘KS_Q exp(— E,, /kT) 2.01¢
Eren, + 2HgTe = Te, Te + 2Hg, [Te,,] = P KT, exp(— Ere,/kT) 453
Erq, + HgTe«»Te,‘@\-«- Hag, (Te,] = P KS,, @xp(— Eqr /kT) 4.96
E,, + Hgy+~—Hgv,, (Vrel = Py, @xp(— E,, /kT) 3.12¢
E, e, + 2Hg, — HgHg,, [Hgr,) = PZ Kig,, OXP(— Epg, JKT)  ~0.42

E, e + Hg, —Hg,

[Hg,] = P, K2, @xp(— E g /kT)

0.84, 0.98

t Corrected experimental number from Vydyanath (13, 14]
1 Calcuiated using a tight-binding Hamiltonian [17].
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First we consider the defects which accommodate
excess teliurium —the first three defects in table 2. The
mass action constants are given by a product of the form

K, = K? exp(— AE,/kT). (26)

For the first three equations the K? are given
by

K2, = ColkT)**(2mmy)**h ™ exp(ASy,, /k) (27)

Kes = ColkTY*(2nmy, ) h™® exp(ASy,,, k) (28)
and

K3, = Co(kT)*'2(2rmy,)*2h > exp(ASt,,/k)  (29)

Here T is the temperature in kelvin, k is Boltzmann’s
constant. my,, is the mass of the mercury vapour atoms, h
is Planck’s constant, AS; is the change in vibrational
entropy upon formation of the defect and C, converts
from site fraction to volume concentrations. Estimates,
valid at high temperature, of the temperature variation of
the AS; terms weie included in the pre-exponential de-
pendence T of the reaction constants in table 1. Because
two unit cells of HgTe are destroyed when a tellurium
antisite is created, compared with one unit cell when a
mercury vacancy is created, we do not expect that
exp[(ASy.,, — ASy,, )/kT] = 1. While we have not com-
pieted the evaluation of these entropy terms, our preli-
minary estimates indicate that this ratio is ~ 10%. For the
tellurium interstitial and the mercury vacancy, we expect
that exp[(ASy,, — ASy,,,)/kT] = 1 will be correct within
a factor of 10. Evaluating the numerical constants we find

[Tey,l -

——_Hs- 1910 30
[VH|] ( )
[Te|] -18

— =~ 10 1
[VH|] (3 )

for T =500°C and Py, = | atm. The conciusion from
equations (30) and (31) that the mercury vacancy is the
dominant native defect is consistent with experimental
observation. This conclusion is unchanged if we include
the possibility that the species may be ionized at the
equilibration temperature where the material is expected
to be intrinsic. Although the tellurium antisite density
decreases more rapidly with decreasing Hg pressure than
does the mercury vacancy density, the point at which the
concentrations are comparable is at less than Py, =
107 '% atm, and certainly the HgTe phase boundary is
reached before such low Hg pressures can be achieved.
This is also consistent with the fact that no p-to-n
conversion is observed in isothermal anneals for low
mercury pressures [13, 14, 38], as would be expected if
tellurium antisites became the majority native defect.
Because the pressure dependences of the tellurium inter-
stitial and the mercury vacancy concentrations are the
same, the above conclusions will hold independent of the
mercury pressure.

We have checked the sensitivity of the calculated
concentration ratios to the magnitude of the reaction
enthalpy. Because the enthalpies enter the exponents,
small changes in the enthalpies will result in large
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changes in the predicted defect concentrations. For ex-
ample. let us assume that our calculated anusite forma-
tion eathalpy is in error by 0.5 eV: in this case the ratio of
antisite-to-vacancy concentrations (at 500°C) will be
reduced to ~1 x 107''. For an anusite formation en-
thalpy in error by 1.G eV, this ratio 1s reduced to ~1 x
107", We do not expect the asa errors .0 exceed 0.5 eV
(5]

If the HgCdTe 1s not completely annealed. and tellur-
ium precipitates are still present, the defect equilibrnum
will not be that predicted by the mass action equations
given in table 2. For example, near the inclusions we can
assume that the defects will be nearly in equilibnum with
the tellurium solid; thus

E,., + Te, v~ Vy,Te (32)

and

Et,.,, + 2Te,—Tey,Te (33

will be the appropriate reactions. The formation energies
for a tellurium antisite and an Hg vacancy from the
tellurium solid are calculated to be 1.63 eV and 1.15¢V,
respectively. Although the difference in the formation
energies is less than when both defects are referenced to
the mercury vapour (~ 0.5 eV compared with ~ 2¢eV),
the gas phase entropy factor does not enter into the ratio
of the defect concentrations. Using the same estimate of
the entropy ratio, the defect concentration ratio using
tellurium solid as the reference state is

[Tell']
[VH|]

Thus, near the inclusions we expect higher relative
concentration of tellurium antisites, as compared with
the rest of the material equilibrated with the Hg vapour.
Additionally, the absolute [V, ] defect concentrations
mayv differ substantially in the two regions of the mater-
ial. At present we expect [Vy,] to be higher in an
‘atmosphere’ surrounding a Te inclusion. A better calcu-
lation of the vibrational entropy is needed before we can
predict these absolute defect concentrations and their
spatial extent. Differences in the defect concentrations
arising from diflerent equilibration conditions are a
possible source of spatial variability of the HgCdTe
material. If the material is not fully annealed to equilib-
rium, for example because of an abundance of tellurium
precipitates, this history may affect subsequent process-
ing.

In the above we have discussed the defect energies for
HgTe and applied them directly to the small-x
Hg, - ,Cd, Te system. Because we are dealing with the
native defects of an alloy, we expect a number of com-
plexities to affect the above analysis. First the variation of
the defect formation energies for vacancies is sensitive to
the alloy environment, in particular for the vacancies of
the non-substituted species, such as tellurium in HgCdTe
[39]. Even for vacancies of the substituted species, we
have found that the formation energies may vary by
several tenths of an electrun volt. Because of this varia-
tion in the formation energy, the fraction of defective sites

~10"8 (34)
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will vary by as much as a factor of 100 from one class of
sites to the next. Consider various classes of Hg sites in
ideal HgCdTe. which can be distinguished to first order
by specifying the number of Hg und Cd atoms in the
second-neighbour shell (the four first neighbours are
always tellunnum), Hg,,_,Cd,, with a concentration
given by [j]. The total vacancy concentration is given by

12
[VHu] = Z [j]‘pl';ll K? exp( - Eﬂkr) (35)
131

where E, is the vacancy formation energy for the jth
cluster. The populations of vacancies in each class of
cluster. j, can be expected to differ because of differences
in the cluster populations and the formation energies.
Additionally, the defect energy leveis may differ in the
various classes of sites, possibly leading to different
iomization states [or vacancies in different classes of sites.
If the cations in the alloy are randomly arranged, such
differences may be difficult to infer experimentally. If,
however, the cations are correlated, exhibiting short-
range order. more complex behaviour may be present. As
discussed earlier, such short-range order has been found
in HgCdTe. In these cases, the contribution to the
vacancy densities from the dominant c.ass of clusters will
be increased. Becuuse the studies finding short-range
order focus on the tellurium-centred five-atom clusters of
the form Hg,_,Cd, rather than on cation-centred clus-
ters of the form Hg,,_,Cd,, higher-level five-atom clus-
ter-cluster correlations must be known to predict the
effects on the vacancy populations.

Next we examine the defects which accommodate
excess Hg in the solid. The existence region for HgCdTe
is always teliurium rich, and thus the native defects which
accommodate excess tellurium are expected to dominate.
For these equations in table 2, K? is given by

K{,, = Co (k)™ ¥*(2nmy,) " ¥'2h* exp(ASy,, /k) (36)

Ky, = Co YkT) 3(2nmy,) " 3h® exp(ASy,,./k) (37)
and

K = CokT) ™32 (2nmy,) ™ *'2h? exp(ASy,, /k). (38)

If we assume the change in entropy is comparable for all
three defects. we find

[HgT=] +14
2~ 10 39
[Vs.) e
and
[HgI] +1l4
~ 10 40
[VT!] ( )

for T = 500°C and P,, = | atm. From equations (39)
and (40) we see that the tellurium vacancy is a minority
defect species. For the pressure and temperature consid-
ered, the density of Hg antisites is predicted to be
comparable to the density of Hg interstitials. Because the
ratio of [Hgy.] to [Hg,] is nearly unity, any errors in the
calculation of the activation energy could push the
balance toward one side or the other. Thus we must
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depend on the next generauon of calculations, with the
asa removed and {ull relaxation inciuded. plus a quanu-
tative comparison of the entropy differences between the
mercury antisite and the tellunum interstuiutal. to deter-
mine the dominant defect in this class.

As mentioned above. we have shown that the tellur-
wum vacancy formation energy vanes sigmficantly with
the alloy environment. Because the tellunum vacancy s
not expected to be a dominant defect in HgCdTe, and the
tellurium diffuses by an interstitial mechanism, we do not
expect any measurable manifestation of this vanauon.
On the other hand. the Hg antisite may be the dominant
Hg-excess defect, and its formation energy may vary
significantly with the alloy :nvironment. We are cur-
rently calculating the magnitude of this vanation.

3.3. Diffusion

HgCdTe exhibits a complex tracer difusion profile, with
both a fast and a slow branch. The fast branch is
attributed to a mechanism with vacancy and interstitial
diffusion in parallel where the dominant diffuser is deter-
mined by the pressure and temperature, while the slow
component fits a mechanism with vacancy and intersti-
tial diffusion in series [ 15]. The activation energies for the
fast branch as discussed previously are 1.90eV and
0.67 eV for the vacancy and interstitial mechanisms,
respectively. Our calculated formation energy for the
mercury interstitials are 0.84 and 0.98 eV for the anion-
and cation-surrounded tetrahedral interstitial sites, re-
spectively, and the experimental formation energy for the
mercury vacancy iIs 2.01 eV. Comparing these energies
with the experimental activation energies we find close
agreement, indicating that the migration energy contni-
bution to the d.ufusion activation energies are small for
both interstitials and vacancies.

In the vacancy diffusion case we are comparing two
experimental numbers for the diffusion and formation
energies. Because the diffusion energy (1.94¢eV) is the
sum of the formation and migration energy, the fact that
the vacancy formation energy (2.01 eV) is larger but
should be smaller is an indication that something is
amiss. and the experiments should be repeated with the
goal of attaining higher accuracy.

There is a similar discrepancy in the interstitial diffu-
sion case. but now we are comparing the expenimental
diffusion activation energy 0.67 eV with a theoretical
formation energy 0.89 eV. We know that refinements to
the theory will lower the predicted value. These refine-
ments need to be done before more definitive conclusions
can be made.

The difference between the two numbers obtained for
cation- and anion-surrounded interstitital sites (0.84 eV
and 098 eV) sets a lower bound on the interstitial
migration energy. Most of the interstitial Hg will sit on
the lower-energy anion-surrounded site, and migrate
through the intermediate-energy cation-surrounded
sites. Examination of the lattice arrangement between
these sites leads us to believe that the potential profile is




unlikely to have a large barnier between the two classes of
site, and. as a consequence, the interstinal migration
barrier should be quite low.

In a recent experiment on mercury diffusion n ton-
implantation-damaged HgCdTe, an activation energy of
several tenths of an electron volt was measured [40]. The
disparate results can be interpreted as a measure of only
the defect migration contnbution to the diffusion activa-
ton energy. since defects 1n excess of the equilbinum
concentration were probably formed during implanta-
tion. [t is not evident that the measured activation energy
corresponds to the vacancy or the interstitial mechanism.
The conclusion that the diffusion activation energies are
largely defect formation energies, with the migration
energies being much smaller, is in agreemcnt with the
above interpretation of the Richter and Kalish [40]
expenment.

4. Conciusions

We have incorporated our calculated defect energies into
the mass action equations for the neutral defects in
HgCdTe. In agreement with experiment, we find the
mercury vacancy to be the dominant native defect in
tellurium-rich material. We also find the mercury antisite
and interstitial defect densities to be comparable, al-
though a better calculation of the vibrational entropy is
needed to confirm this result. Comparing the defect
formation energies of Vydyanath [13, 14] and our theory
to the diffusion measurements by Chen [16] and by Tang
and Stevenson [15], we find agreement with their diffu-
sion activation energies for both the vacancy and the
interstitial mechanisms, if we assume that the migration
energy is small in both cases. Small migration energies
are consistent with the measurement of Richter and
Kalish [40] and our theory. Further work is in progress
to incorporate the defect charge states into the calcula-
tion, and also to calculate the fully relaxed defect energies
with the full potential LMTO.

If the cation migration energies are as small as we are
suggesting, then some cation motion will be present even
at room temperature. This implies that the crystal can
equilibrate to its room temperature order-disorder cor-
relation state. Most semiconductor alloys at room tem-
perature are in metastable correlation states frozen to the
temperature where diffusion stopped as they were cooled.
How this affects devices remains to be determined.

We predict that near a Te inclusion there will be an
‘atmosphere” of defects differing {rom the one the bulk
solid has in equilibrium with a Hg vapour. In this
atmosphere the ratio of the concentrations of the tellur-
ium antisites to Hg vacancies will be increased. The
tellurium antisite concentration may still be too small to
affect any device properties, but if the Hg vacancy
concentration is greater near the inclusions than in the
bulk. this will be a source of spatial variability in the
material. This is a potential source of the worms in LPE
material. We ure cautious about this suggestion because

——
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TEM studies of annesied LPE matenal indicate that theie
are few, if any, Te inclusions remaining [7].

First-pnnciples theones are now fast enough and
accurate enough for pracucal use in process and perfor-
mance modelling. An effort to capture the results of many
expenments into consistent models, and thereby increase
their reliabihty, has, as we have tned to demonstrate 1n
this paper. become a realistic goal.
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A tight-binding model is used to calculate the formation energies, bond lengths, and bulk moduti
of a number of ordered I1I-V and II-VI semiconductor alloys. The parameters in the model are ad-
justed so that the bond lengths, cohesive energies, bulk moduli, and shear elastic constants for the
constituent compounds are described correctly. The model is then applied to alloys without further
adjustment. Based on the calculated excess energies, we conclude that none of the ordered alloys
found experimentally is in its stable bulk equilibrium state at the growth temperatures. Although
the alloy excess energies can be negative, if the reference constituent compounds are constrained to
match the substrate lattice used in epitaxial growth, their magnitudes are not large enough to ac-
count for the observed ordering. A possible explanation of the observed states in terms of a barrier
that prevents the metastable ordered alloy from decomposing into separate phases is presented.
However, this explanation only applies to alloys with lattice-mismatched constituents. Detailed re-
sults on the bond lengths and bulk moduli are also discussed.

I. INTRODUCTION

The bulk semiconductor alloys 4,_,B,C were long
thought to be ideal pseudobinary compounds, in which
the € atoms sit in a fcc sublattice while the substituting
atoms 4 and B randomly occupy the sites of the other fcc
sublattice. However, several recent findings in the last
few years revealed quite a different picture. First, extend-
ed x-ray-absorption fine-structure (EXAFS) experi-
ments"* clearly showed a bimodal distribution for the
nearest-neighbor bond lengths in these alloys, which im-
plies that the equilibrium atomic positions are not the
virtual-crystal sites of the zinc-blende crystal. Recent ex-
periments>* and theories™® also indicated that the ar-
rangement of the alloying atoms in these systems is not
completely random. Most surprising of all, however, has
been the discovery of long-range ordering (LRO) in these
alloys grown epitaxially.’~!° Essentially, all the III-V al-
loys grown by molecular-beam epitaxy (MBE) or metal
organic chemical vapor deposition (MOCVD) under
some special growth conditions are found to be ordered.
While a great majority of these ordered alloys form the
ABC, compounds in one or more of the following three
crystal structures: the CuPt (CP), CuAu I (CA), and
chalcopyrite (CH), a few alloys are ordered in the form of
A;BC, with the famatinite or luzonite structure. These
crystal structures have been well described by Wei
et al.*® Table I is a partial list of the LRO alloys that
have been grown, together with the growth conditions
and ordered structure found. For later emphasis, we note
that the substrate temperatures for the ordering to occur

43

122

range from 400°C to 800°C, and the ordering directions
are not necessarily the same as the growth direction.

Finding LRO is surprising, because it is at variance
with the well-established conventional picture for the
bulk semiconductor alloys having simple phase diagrams
with miscibility gaps®' ~?* driven by strain energy. The
question is, are these ordered alloys thermodynamic equi-
librium states? This question can be answered if accurate
values for the alloy excess energies can be determined.
To be specific, we shall only consider three important
structures, CP, CA, and CH, for the ABC, alloys, and
define an excess energy AE as

AE=E(ABC,))—[E(AC)+E(BQC)], (1

where E( ABC,) is the energy per molecule, or per four
atoms, in the alloy 4ABC,, and E( AC) and E(BC) are
the energies per pair of atoms in the AC and BC zinc-
blende compounds, respectively. If these ordered alloys
are in their thermodynamically stable states at the
growth temperature, AE has to be negative and must
have a magnitude considerably larger than 200 meV on
the present scale.?® This would be in contradiction with
the positive values of AE previously reported for the bulk
semiconductor alloys.?' 2%  However, the ordered
semiconductor alloys found from the epitaxial growth
may be in a constrained equilibrium state, where the con-
straint is imposed by the substrate strain. We need 1o
know the energetics of the various states involved besides
the bulk access energy before we can start understanding
the ordering and stability of these alloys. The calculation
of some of these energies along with an accuracy analysis

9138 ©1991 The American Physical Society
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TABLE 1. A list of the ordered 111-V semiconductor alloys identified experimentally.

Growth
Alloys Structure method Substrate Temperature (*C) Reference
AlGaAs, CA MOCVD and MBE GaAs(100) and GaAs(110) 600-800 Ref. 7
AllnP, CP MOCYD GaAs(001) 650-700 Ref. 13
AllnAs, CP MOCVD InP(OO1) 600 Ref. 9
GalnP. CP MOCVD GaAs(001) 650 Ref. 14
CP MOCVD GaAs(001) 640 Ref. 15
CP MOCVD GaAs(001 650-700 Ref. 13
Ccp MOCVD GaAs(001) 600-630 Ref. 16
CP MOCVD GaAs(001) 600-700 Ref. 17
GalnAs, famatinite LPE InP(110) 630 Ref. 8
luzonite MBE InP(001) 400 Ref. 10
CA MBE InP(110) S00 Ref. 11
CP VLE InP(001) 650-660 Ref. 12
Ga,>AsSb CA MOCVD InP(100) 550-680 Ref. 18
CH MOCVD InP(100) 600 Ref. 18
CP MBE 540 Ref. 19

is the main purpose of this paper.

The excess energies for a number of ordered semicon-
ductor alloys have been calculated from local-density-
functional (LDF) theory using various band-structure
methods.®3%3" 73 Although the LDF error for the
cohesive energy of a III-V compound is typically several
tenths of one eV per pair of atoms, it is generally believed
that the excess energy based on the same technique is ac-
curate to several meV, because the errors in LDF cancel
in Eq. (1). However, the ordered alloys that we are con-
sidering are open structures containing several atoms per
unit cell. The atomic positions in these alloys are usually
distorted away from the regular zinc-blende sites. Only
the most sophisticated band-structure theories which are
capable of treating shear distortion, such as the full-
potential linear combination of muffin-tin orbitals (FP-
LMTO),*® full potential augmented plane waves (FP-
APW),** and the fully converged plane-wave pseudopo-
tential method,>* can be expected to yield precise results
within LDF. Even with present-day computers, it is still
too expensive to use these methods to perform calcula-
tions over a wide range of semiconductor alloys. On the
other hand, although the valence-force-field (VFF) mod-
e’ is simple and is effective in treating the strain ener-
gy, it cannot account for the chemical energy.?® These
considerations have motivated us to use the empirical
tight-binding (ETB) method. The ETB not only can treat
both the strain and chemical energies but also allows for
precise and systematic computations. To eliminate the
propagation of errors from constituent compounds to al-
loys, the parameters in ETB are adjusted to produce the
experimental values for the cohesive energy, bond length
d, bulk modulus B, and the shear elastic constant
C,, —C,, for each constituent crystal. These parameters
are then used in the alloy calculation without further ad-
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justment. Our method thus corresponds to an interpola-
tion scheme for the alloys between the constituent com-
pounds. Such an approach is particularly appropriate for
the present study, because the alloys and the constituent
crystals have very similar structures and local bonding.

The rest of this paper is arranged as follows: Section I1
describes the ETB model, the way the parameters are
determined, and the results for the structural properties
of the constituent crystals. Section III briefly describes
the structural parameters and the energy-minimization
procedure for the three alloy structures in both their bulk
equilibrium states and in states constrained to match sub-
strates. The calculated excess energies are summarized in
Sec. IV and are compared with those from LDF and
VFF. To provide more detailed structural information,
the calculated bond lengths and bulk moduli of the alloys
are also prasented. The final section, Sec. V, contains a
summary and discussion.

II. TIGHT-BINDING MODEL

The tight-binding (TB) model that we are going to use
is very similar to that used by Chadi*® and Harrison. ¥4
The total energy of a semiconductor crystal is assumed to
be the sum of the electron energies €,(k) in the valence
bands and the pair repulsive energies u;; between the
nearest-neighbor atoms:

Er=Eg+U,=33ek+ 3 Su,. @
v k i>j

Furthermore, the band energies are calculated using a
minimum-basis TB Hamiltonian which includes one s
and three p orbitals per atom. The interaction parame-
ters needed from the Hamiltonian are the term values ¢,
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and g, of each atom and the nearest-neighbor two-center and
interactions V., ¥V, V5, and V,,,. For a given crys- uld)=ugldy/d)™, (9)

tal structure, the Hamiltonian H (k) associated with a
given wave vector k within the first Brillouin zone has a
dimension of 4m, where m is the number of atoms per
unit cell. The diagonal part of H (k) consists of the term
values, and the off-diagonal elements are computed as

H, =3¢ ""h,d,,), 3)
d

where the sum runs over the first-neighbor bond displace-
ments d.,- that point from the orbitals denoted y to y".
The y stands for the s, p,, p,, or p, orbital of a particular
atom in a given unit cell. The matrix elements k. are re-
lated to the two-center interactions by the Slater-Koster
relations, 4!

where the superscript and subscript O indicate the values
evaluated at the equilibrium bond length d,. The values
of V2. are taken to be Harrison’s universal forms scaled
by a factor f,

VIO, = fyHamson (10)

Note that Harrison's* universal two-center interactions
take the form

Vearmot =n,.f/(md])

where m is the free-electron mass, # is Planck’s constant,
and the %’s take the following values: %,,=—1.32,
Npo = 1.42, 1,,,=2.22, and 7, = —0.63.

Thus there are four adjustable parameters for each sys-

hss=Viso » @) tem: the scaling parameter f, the powers n and m, and
h,=a,V,, , (5)  the value u,. These parameters are determined by re-

, i , quiring that the model produce the correct experimental
heyy=aiVy,+it—ajlV,,, , (6)  values for the bond energy E, .4, do, B, and the shear
hey=a1a(Vyo=V,0) 7 elastic con:)tant Cy;,—C,;. Since C;,—C,, is governed

where a; =x, /d are the direction cosines of d, while all
the V’s depend only on the length 4.

The first task is to determine the forms for the interac-
tions V., and the repulsive energy « from the constitu-
ent compounds. Since the strain energy plays a very im-
portant role in the alloy formation energy, we shall make
sure that our moudel produces the correct elastic con-
stants. To keep the model close to Harrison's*** origi-
nal form, but to free it from his rigid 1/d2 and 1/d* scal-
ing rules for V.. and u, respectively, we assume the fol-
lowing forms:

only by V) in the present model, it alone determines the
scaling factor f. Then the bond energy E, 4 is used to
determine u,. The requirement that the first derivative
of E; be zero at d, then determines the ratio of the
powers n/m, which couples with the equation for the
bulk modulus to yield the values for n and m. One can
then use these sets of parameters to calculate other quan-
tities that are not employed in the fitting, e.g., another
shear elastic constant C,, the Kleinman internal-
displacement parameter®? £, and the optical-phonon fre-
quencies o at the zone center, to check the validity of the
model.

In the actual calculations we used the term values tab-

Vol d)=V'0.(d,/d)" (8) ulated by Chen and Sher.*’ Table II lists the experimen-

TABLE II. Values of bond length d, bond energy Epqg. bulk modulus B, and shear coefficient
C =C;, —C,; used to determine the parameters in Table III. Also listed are the experimental values of
C,s and the TO-phonon mode w at I' 1o be compared with the calculations. All the elastic constants
are in units of 10" dyn/cm?, d in A, Eyong in €V, and wro is given in terms of wave numbers in cm ™.
The sources of these values are discussed in Ref. 47. Also listed are the force constants a and B (N/m)

for the valence-force-field model in Eq. (13).

d Evona B c Cu " a B

AP 2.367 —2.13 8.600 6.900 6.150 440 43.867 9.429
AlAs 2.451 —1.89 7.727 7.160 5.420 361 40.360 10.132
AlSb 2.636 -1.76 5.817 4.428 4.076 366 33.417 6.790
GaP 2.360 -1.78 9.143 7.870 7.143 367 46.257 10.723
GaAs 2.448 —1.63 7.690 6.630 6.040 269 40.351 9.371
GaSb 2.640 —1.48 5.792 4.946 4.440 231 32.800 7.539
InP 2.541 —1.74 7.247 4.460 4.600 304 40.346 6.543
InAs 2.622 —1.55 5.794 3.803 3.959 219 33.165 5.757
InSb 2.805 -1.40 4.831 3.130 3.132 185 29.605 5.069
ZnTe 2.637 -1.20 5.090 3.060 3.120 177 29.445 4.659
CdTe 2.806 -1.10 4210 1.680 2.040 141 26.374 2.722
HgTe 2.798 -0.81 4.759 1.817 2.259 116 29.773 2.935
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tal values*™* for the d,, Eyyq» B, and the C,, —C),
used to fit the parameters, and the values of C,, and
transverse phonon frequency w used for the consistency
check.

The elastic constants can be calculated directly from
perturbation theory. First the Hamiltonian H (k) is ex-
panded in powers of the infinitesimal strain parameters ¢
up to second order:

H=H,+He+1H,, (n

where H, is the strain-free Hamiltonian and H, and H,
are, respectively, the first and second derivatives with
respect to e evaluated at ¢e=0. The band-energy contri-
bution to the strain coefficient then comes from the
second derivative of Erg with respect to e, denoted by

azEBS |
— =3 3 (vkiH,lvk)
e~ vk
‘s (v, kI H lc, k)| 12)
_? 2;‘ % g,(k)—e. (k)

where €_(k) and ic,k ) are, respectively, the eigenenergies
and eigenvectors of H, for the conduction bands. Simi-
larly, v,k indexes the valence bands. Note that the inter-
valence-band contributions in the second-order perturba-
tion sum cancei exactly and so they are not needed in Eq.
(12). The matrix elements of H, and H, needed here can
be expressed from Eqgs. (3)-(7) in terms of the first and the
second strain derivatives of the two-center interactions
V. and the direction cosines a,.

Table 111 shows the results for f, n, m, and u, obtained
for the constituent compounds, and the corresponding
values of C,y, ¢, and w calculated as a consistency check.
The scaling factor f ranges from 1.1 to 1.5 and tends to
decrease with an increase in polarity. In the power-law
dependence V. =(d,/d)", n ranges from 3.3 to 4.2,

given in terms of wave numbers incin .

which is consistently larger than the n=2 used in
Harrison's universal TB parameters. For the repulsive
pair energy u =uyldy/d)”, the power m ranges from 5.4
to 7.1. The ratio m /n falls in the range from 1.5 to 1.9,
which is smaller than the m /n=2 used by Harrison.**
The calculated values of C, for most systems agree with
experiment to 109 or better. The caiculated TO-phonon
modes at T" for most II1-V systems also agree with experi-
ments to 10 or better. The discrepancies for the 11-V1
systems are larger {about 15%). Relable results for
from both experiments and first-principles calculations
are only available for a limited number of semiconduc-
tors. The calculated &, Cy, and w from the TB model
agrees very well with those results, as shown in Table IV.

The results in Tables III and IV are based on a particu-
lar set of term vajues and TB parameters. It is useful to
examine how the predictions are influenced by these pa-
rameters and the fitting procedure. Table V shows a re-
sult based on Chadi's procedure®®*® in which the TB ma-
trix elements ¥__ are scaled as 1/d°, and the repulsive
pair energy is taken to be

u=ug+uld—dy)+uld—d,)’.

The parameter u, is set to produce the correct bond ener-
gy. u, is determined by requiring the correct equilibrium
bond length, and u, is fixed by the bulk modulus. Two
sets of TB parameters are tabulated for each system: One
of them is the set used by Chadi®® and the other (labeled
present work) is the set obtained by multiplying
Harrison's ¥, by the scaling factor f listed in Table III.
For convenient comparison, the zero of the term values is
set equal to the anion s energy. Despite considerable
differences in these two sets of TB parameters, the results
of the predictions from the two sets are very similar and
also very similar to those predicted from the other pro-
cedure given in Table IV. The only noticeable difference

TABLE III. The results for the parameters f, n, m. and u, obtained from the fitting of the bond en-
ergy, bond length, bulk modulus, and shear coefficient C,, —C,. of Table Il using the full band-
structure calculation. Also listed are the calculated Cgy, internal-displacement parameter &, and the
TO-phonon mode w at I". All the eius:ic constants are in units of 10'' dyn/cm®, u, is in eV, and w are

f n m uy Cys £ w
AlP 1.294 3.530 5.598 6.435 5.827 0.516 447
AlAs 1.464 3.524 5.430 7.089 5.598 0.459 384
AlSbH 1.337 3.268 5.668 4.838 3.944 0.564 354
GaP 1.395 3.705 5.683 7.285 6.857 0.501 382
GaAs 1.397 3.633 5.716 6.530 5.791 0.500 292
GaSb 1.431 3.471 5.717 5.519 4515 0.536 256
InP 1.323 4.240 6.633 5.603 4.260 0.584 304
InAs 1.300 3.997 6.427 4962 3.564 0.552 220
InSb 1.353 3.773 6.399 4.350 3.092 0.602 200
ZnTe 1.284 3.306 5.828 4.285 2.813 0.590 205
CdTe 1.171 3.656 6.761 3.092 1.701 0.694 156
_H_gTe 1.173 3.760 7.074 3.080 2.040 0.716 152
125
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between the predictions in Table IV and Table V is that
in the latter the phonon frequencies are slightly larger
and C,, are slightly smaller. These comparisons show
that the model with parameters given in Table II not only
contains the correct structure properties inserted through
the fitting procedure, but also predicts other mechanical
properties with reasonable accuracy. This model should
serve as a good basis for alloy calculations.

I11. ALLOY CALCULATION

A. CuAu I structure (CA)

The ABC, semiconductor alloy in the CA structure
forms a layer structure ACBCACBC --- along the
(001) direction. The basic lattice vectors can be chosen
as a;=(3,1,0)a, a,=({,—3$,0)a, and a;=i0,0,Bla,
where B is the ¢ /a ratio with a and ¢ being the lattice pa-
rameters. Note that the ideal B value for a zinc-blende
structure is 1. There are four atoms per unit cell: one 4
atom at (0,0,0), one B atom at (%,O,B/Z)a, and two C

atoms at (1,1,8+8)a/4 and (3,1,38—58)a/4, where & is

TABLE IV. Comparison between calculated and experimen-
tal lattice constant a, elastic constants B, C,,—~C,; and C,,,
Kleinman (Ref. 42) internal-displacement parameter ¢, and the
TO-phonon frequency w in wave numbers cm™'. Also listed are
C ' which correspond to the value without the internal distor-
tion. The FP-LMTO and PP-PW are the ab initio theories, and
TB is our tight-binding method discussed in the text. All elastic
constants are in units of 10" dyn/cm?. Experimental values are
those listed in Table I1.

Expt. FP-LMTO* PP-PW® TB
Si a 5.431 5.41 5.45 5.431
B 9.923 9.9 9.3 9.923
C,—C, 10274 10.2 9.8 10.274
Cu 8.036 8.3 8.5 8.013
cy 11.1 11.30
¢ 0.54¢ 0.51 0.53 0.51
) 523 518 521 572
Ge a 5.65 5.59 5.65
B 7.653 7.2 7.653
C.,—C, 8.189 8.5 8.189
Cu 6.816 6.3 6.84
cQ 7.7 9.46
¢ 0.44 0.49
o 303 302 342
GaAs a 5.642 5.55 5.642
B 7.69 7.3 7.69
C,,—Chp 6.63 70 6.63
Cu 6.04 6.2 5.791
cy 7.5 7.83
¢ 0.48 0.50
@ 273 268 292

*Reference 33.
*Reference 49.
‘Reference 50.
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the internal distortion parameter for the C atoms. There
are only two different nearest-neighbor bond lengths in
the alloy:

d,c=la/a)2+(B+81)"?
and
dgc=(a/4)[2+(B—86)]'"2.

For a set of values for g, B, and §, the total energy is cal-
culated following the general description in Sec. II. The
interactions V.. and the repulsive energy are scaled by
the bond lengths according to Egs. (8) and (9), respective-
ly. The Hamiltonian H (k) is now a 16 X 16 matrix. The
total energy is then minimized by varying the three pa-
rameters a, 3, and 8. If the alloy is constrained to match
a (001) substrate, the lattice constant a is fixed by the sub-
strate, and the total energy is minimized with respect to 8
and 5.

B. Chalcopyrite structure (CH)

The ABC, semiconductor alloy in the CH
structure forms a superlayer structure
ACACBCBCACACBCBC - -+ along the (012) direc-
tion. The basic lattice vectors can be chosen

as  a,;=(1,1,—-2Bla/2, a,=(—1,1,2B)a/2, and
a;=(1,—1,2B)a/2, where B again is the c/a ratio, with
an ideal value of 1. There are now eight atoms per unit
cell: two A4 atoms at (0,0,0) and (0,1,8)a/2, two B atoms
at (1,0,8)a/2 and (1,1,00a/2, and four C atoms at
(1+8,1,Bla/4, (1,3+6,3B)a/4, (3,1—8,3B)as4, and
(3—4,3,B)a/4, where § is the internal distortion parame-
ter for the C atoms. Again there are also only two
different nearest-neighbor bond lengths in the alloy:

dc=(a/d)[1+(1+8)2+p%)"?
and
dpc=(a/)[1+(1 =51+ 52,

A similar procedure can now be carried out to minimize
the total energy with respect to the three parameters a. 8,
and §. However, the Hamiltonian H (k) is now 32X 32,
For the case in which the lattice is matched to the (001)
substrate, we again are left with two parameters 8 and &
to vary for the energy minimization.

C. CuPt structure (CP)

In the CP structure, the alloy forms a (111) superlat-
tice ACBCACBC - - . Because of a lack of reflection
symmetry about any of these planes, the B layer need not
be located exactly at the middle position between the two
successive A layers. Also the distance between two
closest atoms from two different A4 layers may not need
to correlate with that between two A atoms on the same
plane. Thus there are a total of five independent parame-
ters required to describe the crystal structure: the lateral
lattice constant a for the layers, the spacing D between
two successive A layers, and the three spacing parame-
ters for the three layers (one B and two C) inside D.
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TABLE V. Comparison between the two different sets of TB parameters described in the text; the resultant coefficients uy, u,, and
u- of u, and the predicted elastic constants, Kleinman internal-displacement parameters £, and phonon frequency w.

1 <

£, E: £, Ef VDD Vspcr Vppo V”v
Si Chadi 0.0 7.20 0.0 7.20 -2.03 2.55 4.55 - 1.09
Present 0.0 6.88 0.0 6.88 —2.41 2.59 4.05 -1.15
work
u, u, u, C Cy cl ¢ w
Si Chadi 7.29 ~9.98 23.90 10.66 7.89 11.38 0.49 620
Present 6.93 -9.70 23.42 10.27 7.83 11.39 0.51 592
work
S(‘ E; e\( Vu‘u V\p‘(s ng‘: Vppo Vpp-’
GaAs Chadi 0.0 9.64 5.12 11.56 -1.70 2.40 1.90 344 ~0.89
Present 0.0 10.09 6.79 14.12 —2.34 2.52 2.52 3.94 -1.12
work
u, U u. Cu Cg; § [
GaAs Chadi 5.12 —7.12 18.22 6.36 5.60 8.77 0.54 339
Present 6.53 —8.39 19.90 6.63 5.70 8.53 0.54 322
work

There are, however, only four atoms per unit cell, each
coming from a different layer, so the H(k} matrix is
16X 16. There are also four different bond lengths in the
crystal, two for the AC and two for the BC bonds. If the
alloy lattice is matched to a (111) substrate, the lateral
lattice parameter is fixed, but we still have four parame-
ters to vary for energy minimization. However, if the al-
loy is matched to a (001) substrate, we shall assume that
all the alloying atoms A4 and B are Jocked into the fcc lat-
tice points of the substrate, and we are left with only two
free parameters which describe the relaxation of the two
nonequivalent C lavers.

It is useful to comment on the Brillouin-zone (B2) in-
tegration needed for the calculation of the electronic en-
ergy. Since our calculation involves relatively small and
easily handled matrices, we are able to sample over a
large number of k points. We found that a uniform grid
of 1000 k points inside the BZ always guarantees a con-
vergence of the total energy pair of atom to within 107}
meV and the elastic constants to an accuracy in the third
digit. We found that total energies calculated using two
special k points®' are about 10 meV per atom pair higher
than the converged value. However, when extending the
two-special-k-point method to the CA and CH struc-
tures,*? most of the errors of the alloy and pure com-
pound cancel, and we found that the final errors in the
excess energies are only about 0.5 meV per atom pair.

Before presenting the results, we briefly describe the
Keating®® valence-force-field (VFF) model. The VFF
only deals with the strain energy. The energy per unit
volume in a strained diamond or zinc-blende crystal is
given by

3 3
=—— % q,[A(d,;-d )]+ — (A, -d) ],

1>
13)

where in the first term, the bond-stretching energy, the

summation i runs over all the bonds, and in the second
term, the bond-angle contribution, the summations in-
clude all the pairs of bonds that share common atoms.
The d; in Eq. (13) is the equilibrium bond length, and
Ald,-d,) is the strain-induced change of the dot product
between the two bond vectors which point from the com-
mon atom to the nearest-neighbor atoms. For a zinc-
blende crystal, there is only one value for the bond-
stretching force constants a, =a, and one value for the
bond-angle-restoring-force constant 8,;=pB. Their values
are determined®® by fitting the experimental bulk moduli
B and shear elastic constants C,, —C,;, and are tabulated
in Table II. We extend Eq. (13) to calculate the strain en-
ergy in an ABC, alloy by treating each bond and each
pair of the same bonds in the same way as in the constitu-
ent compounds. However, when dealing with the bond-
angle term involving two unlike AC and BC bonds, both
d, and B;; are taken to be the average values. The results
from VFF will be compared with the ETB calculations in
Sec. IV.

IV. DISCUSSION OF ALLOY RESULTS

A. Excess energies

Before presenting the results for different kinds of ex-
cess energies, the readers should be reminded of the rela-
tion between these energies and ordering. The Appendix
provides a qualitative discussion of this relation. It also
describes how different kinds of excess energies presented
below may alter the picture of ordering.

The bulk excess energies AE calculated from ETB for
the ABC, alloys in the three structures of CA, CH, and
CP are listed in Table VI along with the results from
VFF and LDF. First we observe that ETB and VFF give
very similar results. Both models produce very small AE
values for those alloys composed of compounds with
nearly equal lattice constants. However, AE for AlGaP,
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and HgCdTe, derived from ETB are sligntly negative.
The differences between the ETB and VFF results in
these systems are a measure of the small size of the
chemical-energy contribution to AF in the ETB model.
For the lattice-mismatched alloys, all the AFE values from
ETB are positive and are slightly larger than those ob-
tained from VFF except for InAlP,. The major reason
VFF yields a smaller AE is that the VFF used here con-
sistently predicts smaller values of the elastic constant
C,, than the experimental values, thereby underestimat-
ing the strain contribution to AE. However, the small
chemical energy included in ETB may upset this trend,
exemplified by InAlP,.

The quantitative comparison between ETB and LDF is
mixed. Starting from the lattice-matched alloys
GaAlAs,;, the AE from LDF calculated by different
groups range from 7.5 to 35 meV for the three structures
considered, as compared to nearly zero calculated from
ETB. Similar differences between LDF and ETB also
occur in another lattice-matched system, HgCdTe,.
Since the strain energy is nearly zero in these systems, the
10-meV or so difference between the present calculation
and the majority of the LDA results represents the
discrepancy in the estimate of the chemical energy in AE
between the two theories. These differences certainly are
well within the margins of errors of both ETB and LDF.
However, we note the LDA AE values for GaAlAs, in
the CA structure are rather consistent except the 35 meV
from Ref. 56. For the lattice-mismatched alloys, ETB
agrees very well (within 20 meV) with LDF for the I11.V
alloys in the CP structure and II-VI alloys in the CH
structure. The agreement is also reasonable for all alloys
in the CA structure. However, the differences between
the two calculations are more substantial for the II1-V al-
loys in the CH structure and II-VI alloys in the CP
structure.  We note that although the trend
AEqy <AE, <AEp among the three structures holds
for both ETB and LDF for these lattice-mismatched al-
loys, the AE-y values from LDF for the 11I-V systems
are ccnsiderably lower than those from ETB, particularly
the negative values calculated for InAlP, and InAlAs,.
Despite all these quantitative differences, the qualitative
trends of our ETB predictions are rather similar to those
from LDF by Wei and co-workers®*’ as shown in Fig. 1.
The most important conclusion that can be drawn from
Table VI is that these ordered bulk alloys are not the
thermal equilibrium states at the experimental growth
temperatures shown in Table 1. For this to happen, the
AE value has to be less than —200 meV per four atoms, "
as mentioned earlier. This AE value is far below all the
calculated values and is beyond the uncertainties of our
ETB model and the LDF calculations listed above.

While the above excess energies do not support a
thermally stable ordered bulk alloy at the growth temper-
ature (=600°C), they may offer different conclusions
when applied to the epitaxially grown alloys. The idea
was first suggested by Flynn®' in connection with epitaxi-
al growth of ordered metal alloys. If the substrate ma-
tertal serves as a reservoir for the epitaxial film, then the
" alloys grown on the substrate have to be in thermal and
mechanical equilibrium with the substrate. Since most
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substrates used in the growth are selected to have their
lattice constants close to the equilibrium lattice parame-
ters (see Tables I and IX) of the ordered alloys mentioned
above, 1t takes little strain energy for these alloys to
match the substrates. On the other hand, if an alloy on
the substrate is to decompose Into two substrate lattice-
mismatched constituent compounds, it takes energy to
constrain the separated systems. Only the case of thin
layers in which no dislocations form will be treated.
Then the reference constituent energies E(A4B) and
E(AC) in Eq. (1) which must be used to calculate the ex-
cess energy for epitaxial growth, referred to as AE,,, are
the ones with their lattice parameters matched to the sub-
strate. This coherent strain can make AE,, negative for
an alloy even when its bulk excess energy AE is positive.
Of course, the actual values of excess energies are sub-
strate specific. However, an overall assessment can be
made when the substrate is also an alloy by choosing the
substrate lattice constant to be the average value

a, =a=(a%¢ +agc)/2 .

The major difference between AE,, and AE then comes
from the strain energies of the constituent compounds
forced to lattice match the substrate. Since the energies
of the ordered alloys at their equilibrium lattice constants
a only differ by a small amount (1 or 2 meV) from those
at @, we shall use the alloy energies already calculated in
Table VI to deduce the epitaxial excess energy.

The strain energy of either constituent compound
matched to a, =a on the (001) substrate can be estimated
from the following simple formula:

E(AC)=(C,, +2C,,—4C3,/C,,)8%a /4 , (14)

where 8,=(ac—adc)/a@ is the percentage lattice-
parameter difference between the two constituent com-
pounds. The strain energies used to calculate the values
of AE,, in Table VII, however, are obtained from ETB,
which in fact only produces a small correction (1 to 2

CuAu i

o

Bulk Formation Energy (meV per 4 atoms)
L] ;

o
~40 —— + + + — -+ 4
NinP,  GalnFy, GaAsSb GoinAm, HgZnTa, CdZnTe, Go,PAs

FI1G. 1. The excess energies of Eq. (1) for the ordered alloys
in three crystal structures calculated from the present TB model
{solid circles) and from LDF in Ref. 6 (open circles).
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meV at most) to Eq. (14). The relative values of AE,,
among the three structures on the same substrate, say,
(001), should remain the same as those of AE, because
these two energies only differ in the reference energy.
For example, the relation

AE,(CH)<AE,(CA)<AE,,(CP)

still holds for alloys composed of lattice-mismatched con-
stituent compounds. On the (001} substrate, the AE ,
values are essentially all positive in the CP, negative in
the CH, and switch between positive and negative values
in the CA structure. The CP alloys matched to the (111)
substrate have very small AE,, with magnitudes smaller
than 10 meV. The LDF epitaxial energies calculated by
Wei, Ferreira, and Zunger® have the same qualitative
trends as those from ETB among the three structures.
The quantitauve differences in AE,, between the two cal-
culations are larger and also more scattered than those in
AE. This is peculiar, because the difference between AE
and AE,, in both calculations comes from the strain ener-
gies of the constituent compounds, which can be reliably
estimated from Eq. (14) and are well prescribed by our
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ETB model. Despite these discrepancies, a simple con-
clusion can also be drawn from Table VII. These num-
bers still cannot account for the ordering observed exper-
imentally, because all the calculated AE,, are still well
above the —200-meV value required for the ordering at
the growth temperatures. 2

In the above consideration, the constituent compounds
are constrained to match the lateral lattice of the sub-
strate and are allowed to relax fully in the growth direc-
tion. For a (001) substrate with a lattice constant a, =4,
the ¢ /a ratio for either compound is estimated to be

c/a=1+§4C,,/C,, +0.5), (15)
where 8, again is the percentage bond-length difference
between the two constituent compounds. This ¢ /a relax-
ation results in elongation for one compound and shrink-
age for the other along the growth direction. If the lat-
tice constants of two constituent crystals have a substan-
tial difference, these opposite relaxations will produce
strained grain boundaries between the AC and BC crys-
tals. The reference state energy E( AC)+ E(BC) used in

TABLE VI. The bulk excess energies AE (in meV per four atoms) from ETB and comparison with the results from local-density-

functional (LDF) theory and the valence-force-field (VFF) model.

CuAu | Chalcopynite CuPt
Alloys ETB LDF VFF ETB “IDF VFF ETB LDF VFF
AlGaP, —-2.4 1.5 —2.8 1.0 —2.6 Q.2
AlGaAs, 0.6 10.8* 0.3 0.6 11.4° 0.2 0.8 7.5 04
11.5¢ 9.8°
15.1°
13.5¢
35¢
AllnP, 69.0 430 74.0 44.0 =210 473 114.2 97.0° 111
AllnAs. 68.8 35.0' 66.6 45.8 -15.0 43.7 107.0 97.6
Ga,PAs 30.0 26.6F 231 19.4 6.58 15.0 336 37.28 327
Ga,PSb 260.2 207.0 67.4 135.8 290.8 292.6
Ga,AsSb 113.0 129.2° 91.8 69.8 52.0¢ 599 128.0 132.0¢° 130.1
114.8"
115.0¢
GalnP, 884 115.6* 83.8 57.2 19.0' 54.3 1394 155.4¢ 1249
91.0¢
54.4*
GalnAs, 73.2 60.1! 67.3 48.2 16.58 43.8 113.0 108.5% 99.5
83.6*
66.7°
GalnSb, 57.4 51.5 374 332 85.58 76.2
ZnCdTe, 343 54.28 33.7 224 19.28 21.1 65.3 103.58 J6.0
ZnHgTe, 29.7 42.58 321 21.0 11.48 199 549 103.38 53.5
CdHgTe, -23 12.1¢ 0.61 -2.7 11.38 04 -2.7 9.8¢8 1.1
‘Reference 28. $Reference 6.
“Reference 31. "Reference 30.
‘Reference 27. 'Reference 32.
dReference S5. 'Reference 29.
‘Reference 56. *Reference 54.
Reference 53. 'Reference 74.
129
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TABLE VII. The excess energy AE,, (in meV per four atoms) for epitaxial alloys calculated from the present TB model and com-

parison with the LDF results.

Structure CuAu | Chalcopyrite CuPt
substrate (100) (100} (i (100} (100)
(Alloy) TB LDF TB LDF TB TB LDF
AlGaP, -29 -3 0.5 -30
AlGaAs, 0.8 0.7 04 0.2
AllnP, —-11.5 -36.0° —36.3 -0.2 338 -18.0*
AllnAs, —4.6 —278 —74 336
Ga,PAs 5.3 4.1* -21* 0.2 89 0.5*
Ga,PSb 40.5 —52.2 7.8 71.1
Ga.AsSb 15.5 35.0° =276 —28" —5.6 30.5 52.0°
17.0° —45.8¢ 11.5*
48.0°
GalnP, -33 -3.0 —345 —106* —-94 7.6 3.4
12.8¢
GalnAs;, 0.4 -9.7 —254 —9.6 39.5 4.1°
10.5¢
6.7°
8.4°
29.6°
GalnSb, 14 —18.5 -5.0 29.9
ZnCdTe; —5.6 —54* —-17.5 —57.2* 6.6 25.5 0.2?
ZnHgTe, ~5.9 —13.5* —14.7 —64.2° 30 19.3 0.9*
CdHgTe, —-24 —2.8 —3.0 —-29

*Reference 6.

*Reference 27.
‘Reference 28.
YReference 29.

the calculation of AE,, in Table VII assumed that the
decomposed AC and BC phases are macroscopic crystals.
The domain-wall energy contributions were neglected be-
cause there are few boundaries. However, a realistic path
between the completely separated and fully relaxed AC
and BC domains is likely to pass through a sequence of
intermediate states, including the stage of forming micro-
scopic AC and BC clusters which serve as nucleation
centers. As an approximation to this phase space im-
mediately adjacent to the ordered ABC, alloy, we have
estimated the metastable nucleation energy barrier by as-
suming that the microscopic AC and BC clusters are lat-
tice matched to the ABC, alloy and their energetics can
be estimated from the bulk crystals under the same con-
straint. Because the ¢ /a ratios for the ordered alloy are
nearly unity (see Table VIII), this epitaxial energy against
nucleation of AC and BC clusters is equivalent to using a
reference energy E(AC)+E(BC) which disallows the
¢ /a relaxation. Consequently, this epitaxial excess ener-
gy for the alloy, referred to as AE,’P’ (the hard model), is
lowered further as shown in Table VIII. Note that the
values for a number of alloys have already attained mag-
nitudes that could account for the stability of the ob-
served LRO of lattice-mismatched alloys. However, de-
tails of the mechanism that causes the LRO to preferen-
tially form in the first place must still be determined.
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B. Bond lengths

In addition to the excess energies, our calculations also
produce detailed information about the equilibrium
structures of the alloys. Table IX lists the ¢ /a ratio and

TABLE VIII. The excess energy AEY (in meV per four
atoms) for epitaxial alloys without (¢ /a)-ratio relaxation.

CuAu I Chalcopyrite CuPt
AlGaP, —-3.1 -34 -33
AlGaAs, 0.7 0.6 0.2
AllInP, —-192.5 —217.4 —147.3
AllnAs, —149.0 —-172.2 —-110.8
Ga,PAs —37.5 —48.1 —339
Ga,PSb —354.4 —447.1 —323.8
Ga,AsSb —-162.2 —205.2 —147.1
GalnP, —200.4 —231.6 —149.5
GalnAs, —149.8 —174.8 —109.9
GalnSb, —113.9 —133.8 —85.3
ZnCdTe, —-131.6 — 1435 —100.5
ZnHgTe, —150.3 —159.1 —125.1
CdHgTe, —2.8 -32 -32
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the first-neighbor bond lengths for all the alloys studied.
These results are particularly useful if experiments such
as EXAFS are carned out to measure the local structures
of these LRO alloys. As mentioned earlier, the ¢ /a ratios
are nearly unity for all alloys. The notations used in the
table are such that the equilibrium bond lengths of the
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constituent crystals are in the order d%->dJ.. The
bond lengths in the CA and CH structures are in general
bimodal, with d ;- >dgc. This result is similar to that
found in the disordered bulk alloys. There are four
different bond lengths in the CP structure: dic, d3,
d}c. and dj., where superscripts T and S mean the triple

TABLE IX. The equilibrium bond lengths d .- and dgc and the equilibrium average lattice con-
stants @ (all in A). In CP structure, the first values d , and dg are for those bonds along the (111)
direction, and the second values are for those in the other three directions.

ABC, c/a a d dgc
AlGaAs, CA 1.000 5.658 2.450 2.449
CH 1.000 5.656 2.450 2.449
CP 0.998 5.660 2.451 2.449 2.444 2.451
AlGaP, CA 1.000 5.457 2.365 2.362
CH 1.000 5.459 2.366 2.361
CP 0.998 5.461 2,371 2.362 2.354 2.366
InGaSb, CA 1.009 6.272 2.781 2.669
CH 0.995 6.298 2.788 2.660
CP 1.001 6.295 2.788 2.762 2.650 2.699
InAlAs, CA 1.013 5.831 2.597 2.479
CH 0.992 5.870 2.604 2.469
CP 1.001 5.861 2.599 2.578 2.456 2.512
InGaAs, CA 1.012 5.834 2.597 2478
CH 0.993 5.866 2.605 2.468
(83 4 1.002 5.859 2.602 2.577 2.457 2.510
InAIP. CA 1.007 5.658 2.520 2.395
CH 0.996 5.674 2.527 2.384
CP 1.001 5.677 2.516 2.504 2.381 2.425
InGaP, CA 1.013 5.640 2.518 2.390
CH 0.993 5.672 2.526 2.3719
CP i.003 5.665 2.520 2.499 2.368 2.425
AsPGa, CA 1.001 5.549 2.430 2.379
CH 0.999 5.552 2.437 2.371
CP 0.998 5.556 2.450 2.422 2.354 2.390
SbAsGa, CA 1.003 5.880 2.601 2.499
CH 0.998 5.884 2.613 2.482
(8} 0.995 5.905 2.637 2.585 2439 2.531
SbPGa, CA 1.008 5.776 2.586 2435
CH 0.994 5.787 2.603 2.407
CP 0.993 5.822 2.635 2.567 2344 2.486
CdHgTe, CA 1.000 6.471 2.805 2.799
CH 1.000 6.471 2.806 2.798
Cp 0.999 6.473 2.817 2.798 2.788 2.805
HgZnTe, cA 1010 6.256 2.783 2.656
CH 0.995 6.286 2.787 2.650
Ccp 1.003 6.277 2.771 2.770 2.659 2.679
CdZnTe, CA 1.016 6.252 2.790 2.657
CH 0.991 6.302 2.795 2.650
CcP 1.007 6.275 2.787 2.771 2.647 2.685
131
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TABLE X. The ratios y = \d,,,,, —d)/td, —d for the ordered alloys calculated from the present TB
model and comparison with experimental results for the disordered alloys.

CA CH Disordered alloys

ETB ETB Experiments
4BC, Y ac Y 8¢ Y ac s 1 4c Y 8¢
InGaSb, 0.71 0.64 0.80 0.76 0.89° 0.88*
InGaAs, 0.71 0.66 0.80 0.78 0.77¢ 0.80°
InGaP, 0.74 0.67 0.83 0.79 0.80° 0.76*
AsPGa, 0.59 0.57 0.75 0.75 0.76* 0.75*
HgZnTe, 0.81 0.76 0 %6 0.84 0.72% 0.73°

“Reference 58.
"Reference 2.

and single bonds, respectively. However, the alloy lattice
constants a are quite close to the mean value @ of the con-
stituent compounds. A more sensitive measure of the bi-
modal distribution, following Boyce and M_ikkelsen_.‘ iIs to
look at the ratio ¥ ,c =(d ,c —d)/(d%c —d) with d being
the average bond length, and similarly, yg-. Table X
compares these ratios for the CA and CH structures with
the experimental vaiues for the disordered bulk alloys.
Note that a value of ¥ =1 corresponds to the totally re-
laxed case where there is no bond stretching, whereas
¥ =0 corresponds to a rigid virtual crystal where all the
atoms are on the zinc-blende crystal sites. In terms of the
valence-force model, this ratio is roughly y =a/ta+28),
where a and B [see Eq. (13)] are the average values for the
bond-stretching and angular-restoring-force constants of
the two constituent compunds. The calculated y ratios in
Table X follow this trend (see the a and 3 values in Table
II). However, the values of ¢ show that CH structures
are more relaxed than the CA structures. This result is
consistent with the lower AE values in CH than in CA
shown in Table VI. The ETB values of y for GalnAs,,
GalnP,, and Ga.AsP in the CH structure are very close
to the experimental values™* for the disordered alloys.

This result, when correlated with the lower excess energy,
may suggest that the disordered alloys tend to favor a lo-
cal configuration of the CH structure. However, the cal-
culated y values for GalnSb, and HgZnTe, do not corre-
late well with the experimental results. As a matter of
fact, the trend as a function of the 5/ ratio in the exper-
imental results is reversed. It would be interesting to see
if these two ordered allovs do have different bond lengths
from the disordered states. While the values of y in this
table range from 0.6 to 0.9 for the lattice-mismatched al-
loys, this trend does not hold for the lattice-matched al-
loys. For example, Table IX shows that for Hg—Te and
Cd—Te bond lengths in HgCdTe,, both CH and CA
structures nearly retain their respective constituent crys-
tal values (i.e., ¥ = 1), which was also seen in a recent ex-
periment on the bulk alloy.*® Finally, the bond lengths
for the CP structure are characteristically different from
those in CA and CH structures. The single bonds along
the ordering direction [111] tend to be close to the con-
stituent values while the triple bonds in the other direc-
tions have less relaxations (with y values around 0.5 or
less).

TABLE X1. Bulk moduli {in 10" dyn/cm?! of ordered alloys in three crystal structures calculated from the present TB model and
the percentage deviations AB *=(B — B, )/B,, from the average values B,, of the constituent compounds.

ABcy ABca ABce
Bey Bea Bep B, (%) (%) (Ge)

AlGaP, 8.858 8.858 8.854 8.8715 —0.150 -0.15 —0.201
AlGaAs, 7.695 7.693 7.689 7.7085 —-0.181 —0.20 —0.257
AllnP, 7.876 7.860 71.774 7.9235 —0.605 -0.08 —1.882
AllnAs; 6.705 6.691 6.661 6.7605 —0.828 —-1.03 — 1475
Ga,PAs 8.328 8.291 8.294 8.4165 —1.046 - 1.50 —1.457
Ga,PSb 6.584 6.297 6.188 7.4675 —11.836 —15.68 —=17.135
Ga,AsSb 6.314 6.198 6.157 6.7410 —6.342 —8.05 - 8.662
GalnP, 8.007 8.035 8.878 8.1950 —1.437 -1.95 —3.865
GalnAs, 6.610 6.579 6.508 6.7420 —1.961 —-2.42 —3474
GalnSb, 5.226 5.202 5.156 53115 —1.607 —-2.07 —-2.923
ZnCdTe, 4.6105 4.6035 4.3375 4.6500 —-0.85 -1.00 —6.72
ZnHgTe, 4.8898 4.8872 4.6323 4.9245 -0.71 -0.76 —593
CdHgTe, 4.4697 4.4721 4.4706 4.4845 —0.33 —0.28 —0.31
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C. Bulk moduli

Table XI lists the results for the bulk moduli calculated
from ETB. Also listed are the percentage deviations
from the mean AB/B. Note that all AB values are nega-
tive. The magmtudes of AB are small except for
Ga,AsSb and Ga,PSb which have large differences in
both B and d between the constituent compounds. Al-
though the magnitudes of AB get larger for systems with
larger differences in the bond lengths, the dependence
does not seem to be a simple function of the bond-length
difference. The uniformly negative AB values were also
obtained from LDF by Ferreira et al.® for the Ga,AsSb
alloys. One reason for the negative values of AB, in a
very qualitative argument, is due to the fact that the bulk
moduh of semiconductors scales inversely as high powers
of the lattice constant,” and at the same time, the alloy
lattice constant s approximated well “y the mean
value—the Vegard law. This qualitative behavior also
comebs out of a simple VFF analysis for disordered al-
loys. ®*

V. SUMMARY AND CONCLUSION

This work was motivated by our interest in under-
standing the mechanism of ordering for the semiconduc-
tor alloys grown by MBE and MOCVD. We have ap-
plied an empirical tight-binding (ETB) model to sys-
tematically interpolate the alloy total energies from those
of the constituent compounds. Since the strain energy
makes a dominant contribution to the excess energy AE,
particular attention has been given the elastic properties,
in addition to the lattice constants and cohesive energies.
Our calculated bulk excess energies AE are positive for
all alloys composed of lattice-mismatched compounds,
and nearly zero for the lattice-matched systems. Based
on these results, we conclude that all the ordered semi-
conductor alloys found experimentally are not in their
thermodynamic stable states at the experimental growth
temperatures. The same conclusion can also be drawn
from the most recent LDF calculations®20:27732:33736 jige.
ed in Table VI. We note that several earlier theories®* ~%¢
that concluded a stable ordering for these alloys have all
been revised™* " ™ (see also comments in Ref. 71).

Our calculation also generates detailed information
about the structures and bulk moduli of these alloys.
These results should be checked experimentally.

To further explore the stability of these alloys, we ex-
amined the energetics for spontaneous ordering when the
grown materials are constrained to match a substrate lat-
tice. Two kinds of epitaxial energies are calculated: One,
denoted AE,,, corresponds to the situation in which the
constituent compounds are allowed to relax fully along
the growth direction; and the other, the hard-model
AE‘,'Z, does not allow ¢ /a relaxation. Although the sign
of AE,, can be negative, the magnitudes are too small to
account for the observed spontaneous ordering. Howev-
er, the sign and magnitudes of AEe',,’ for a number of
lattice-mismatched alloys are found to be comparable to
the energies needed for ordering at the growth tempera-
tures. Whether or not this i1s a plausible mechanism
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deserves a more detailed investigation.

Even if AE,’; turns out to be a possible mechanism,
based on the considerations presented in this paper we
are still left without an explanation for the ordering in
the lattice-matched alloys such as GaAlAs,. We do not
believe that any refined bulk calculation will produce an
excess energy with large enough magnitude to account
for the observed ordering in GaAlAs,. On the other
hand, epitaxial growth is very surface sensitive. Because
of changes in the bonding character at surfaces, e.g., dan-
gling bond, charge transfer, and reconstruction, the sur-
face structural energies behave quite differently from
those in the bulk, and do not extrapolate from the bulk,
energies.72 New mechanisms for spontaneous ordering
may emerge from surface energetic considerations. Some
hopeful thoughts™ along this line have already been sug-
gested.
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APPENDIX: EXCESS ENERGY AND ORDERING

The excess energies AE, AE,,, and AE, considered in
the text for the ordered alloys have to be considered
along with the free energies of other possible phases in-
cluding the disordered alloy in order to determine if the
ordered phase is stable at a given temperature. A
schematic mixing free-energy curve AF for a disordered
pseudobinary alloy 4,_, B, C as a function of alloy com-
position x at several different temperatures is shown in
Fig. 2. Figure 2(a) is for the case AE >0, and Fig. 2(b) for
AFE <0. (These curves are similar to Fig. 1 in Ref. 57) If
AE>Q, then the stable phase is either the segregated
phase or a uniform disordered solution depending on
whether the temperature T is lower or greater than the

(a) AE) O (b) BE € O

[~
m

Free Energy AF

(=]

FIG. 2. Schematic plots of the mixing free energy of a disor-
dered alloy as function of alloy composition x (dotted lines) for
{(a) AE>0 and (b} AE <0. The dashed line represented AE for
an ordered alloy 4BC,.
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critical temperature T, for ph.se segregation or forming
miscibility gaps. However, if AE <0, then the ordered
phase is stable at a temperature T lower than the critical
temperature T, for the order-disorder transition.

A crude estimate of the magnitude of AE in Fig. 2(b)
required for ordering at a given temperature T can be
made by assuming that the disordered phase 1s a random
alloy. Then in the present units of energy (for an 4BC,
molecule), the magmtude of the order:ng energy defined
as AE,= AE —AE,i must be greater than 2kT In2,
where AE} is the mixing energy for the disordered phase
for the case at x =4 and T=0, also shown in Fig. 2(b).
At a typical epitaxial growth temperature of 600°C (see
Table I}, the minimum ordering cnergy is estimated to be
AE, =100 meV. Taking AE, =AE/2, one finds a critical
value of AE =—200 meV. However, if a strict pair-
potential nearest-neighbor model is used, AE, = AL for
both the CuAu | and chalcopyrite structures and the re-
quired AE value becomes —400 meV in this estimate.

Finally, consider the implication of different excess en-
ergies 1¢ nrdering. Let us take Ga,AsSb in the chalcopy-
1ite structure as an example, for which the three excess
energies are 70, — 2§, and — 205 meV for AE, AE ., and
AE!:, respectively isee Tables VI, VII, and VHI! from the
TB calculation. The positive value of AE corresponds to
the case of Fig. 2ta), which shows that the ordered bulk
phase 1s not stable at any temperature. Although the
negative value AE,, = — 28 meV corresponds to the case
m Fig. 21b), the corresponding critical temperature T, 1s
very low. This implies a simple constraint that the lateral
lattice constants of the grown matenial matched to the
substrate lattice are not enough to produce a meiastable
ordered alloy at the expenimental growth temperature ot
600°C. However, the significant negative value of
AE‘,’z= — 205 meV, resulting from a further constraint in
which the ¢ axis relaaation 1s not allowed, may raise the
T. in Fig. 2(b) into the range of the growth temperature
and make the metastable ordered pl ase a possibility.
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ABSTRACT

Native point defects play an important role in HgCdTe. Here we discuss some of the
relevant mass action equations, and use recently calculated defect formation energies to
discuss relative defect concentrations. In agreement with experiment, the Hg vacancy is
found to be the dominant native defect to accommodate excess tellurium. Preliminary
estimates find the Hg antisite and the Hg interstitial to be of comparable densities. Our
calculated defect formation energies are also consistent with measured diffusion activation
energies, assuming the interstitial and vacancy migration energies are small.

INTRODUCTION

Sophisticated infrared devices are currently made from HgCdTe. While the material
has entered a manufacturing phase, there remain many unanswered questions about its
nature. Native point defects appear to play a far more important role in the proper-
ties of HgCdTe than they do in other technologically important semiconductor materials.
The formation energies of these defects and their associated localized states in the band
gap are still not completely characterized. Similarly, the characterization of impurities in
HgCdTe is far from complete. Beyond point defects it is well known that a number of ex-
tended defects are important. The best studied are tellurium inclusions and dislocations
which form at heterojunctions and at HgCdTe-substrate interfaces. As grown material is
tellurium-rich, the excess Te is accommodated in the form of Hg vacancies and tellurium
inclusions. As such, post growth anneals in a Hg vapor overpressure are typically per-
formed to reduce the Hg vacancies prior to other device processing; this converts high
purity undoped material from p-type to n-type. The donor causing the n-type doping has
not been identified, although it is believed to be a residual impurity, rather than a native
defect.

One of the more perplexing properties of HgCdTe stems from the fact that it is an
alloy. Until a few years ago it was thought that all tetrahedrally coordinated zincbiende
semiconductor alloys of the form A;_,BxC were random, with the C atoms occupying
one fcc sublattice and the A and B atoms sharing the other sublattice at random. This
has now been demonstrated to be incorrect in many semiconductor alloys. The nature
of the correlations can be characterized by counting the populations of those clusters
consisting of a centered C atom and its four surrounding A or B atoms. There are five
types of clusters of the form A,_;ByC with n=0, 1, 2, 3, or 4. If the alloy is random

the cluster occupation probabilities, pg, form the binomial distribution, i.e. P, random =

(:)( 1 - x)4-0x0, In correlated material, deviations from this distribution are found. For
example, if at x=0.25 the material tends towards a regular compound, then p, is increased
while the other cluster occupation probabilities are reduced relative to py random- If the
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material tends towards spinodal decomposition, then py and py are enhanced in separate
regions of space, and the other cluster occupation probablilities are reduced. In most
semiconductor alloys, the major forces for correlations are strain energies resulting from
bond length differences between the AC and BC constituents. Thus theory predicts
that HgCdTe will be nearly random because HgTe and CdTe are nearly lattice matched.
Calculations that include chemical energies and charge shifts, in addition to the strain
energies, have also predicted HgCdTe ‘o be a nearly random alloy. Yet several recent
experiments on alloys with x=0.20-0.25 have suggested that HgCdTe is correlated, with
Pn > Py random for n=0 and 1, and py < Pa random for n=2, 3, and 4. If this is the
case it may have importani consequences on diffusion and transport properties. The
consequences of such correlations on the defect populations are discussed further below.

NATIVE DEFECTS

The doubly ionized cation vacancy is believed to be the dominant native defect in
HgCdTe, that dictates the electrical behavior of the undoped material (1, 2]. We have
recently reported the results of calculations of native and impurity defect total energies in
HgTe, CdTe and ZnTe {3|. The energies for the formation of various native point defects
in HgTe are summarized in Table I; the HgTe solid and the Hg in the vapor are used as
references [4]. These calculations used the linearized muffin tin orbital (LMTO) method
within the local density approximation (LDA) to the exchange correlation energy. Large
supercells containing one defect per cell were repeated periodically, and from the differ-
ence in total energies per cell, with and without the defect, the defect formation energy
was calculated [o expedite the calculations, the energies were calculated within atomic
spheres approximation (ASA) with a small (spd) basis set. In the ASA, an approximation
to the exact density functional is evaluated; as a result, an error is introduced which
is larger than in other LDA methods [5], and relaxation energies cannot be accurately
calculated. Thus only those differences in energies here that are > 0.5 eV here should be
viewed as significant for these calculations.

An appropriate set of mass action constants for the neutral defect reactions is also
g:ven in Table L. The notation in that table is as follows. Ap corresponds to an A
species occupying a B site, where [ corresponds to an interstitial, and V to a vacancy. No
subscript on a species indicates it is occupying the correct lattice site, e.g., Hg = HSH‘.
Square brackets, [ ], refer to concentrations. A subscript “g” indicate the species in the
gaseous, or vapor, phase and Py, is the Hg vapor pressure. Most of the reactions in
Table I involve the creation or destruction of one or more unit cells. Because the resulting
change in volume is accommodated at the surface, the change in the number of unit cells
will enter into the determination of the defect equilibrium through the surface entropy.
Additionally, surface preparation and orientation will affect the surface free energy. We
have assumned for the present that such surface effects are neglible, i.e., that the volume
expansions and contractions can occur with negligible changes in the surface properties.

To correctly complete the defect equilibrium determination one must include the equi-
libration of the electronic charges of the system. To do so, one must have knowledge of
the dominant charge states of the defects, and their activation energies with respect to
the neutral defect. Such calculations are complicated by the fact that most ab initio
calculations of the electronic band structure of semiconductors predict an incorrect band
gap, Eg, a shortcoming of the local density approximation (LDA.) As such, we shall focus
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Table I. Defect reactions and formation energies

Defect reaction Defect concentration Energy
(eV)
Ey,, +HgTe ~ Vy,Te + Heg [Vigl = P;,; K?,”‘ exp('-i‘.’,&) 2.24°
Er,, +2HgTe ~ Teg Te+ 2Hgg [Tepq) = P'-fs Kg% exp(f’;r‘"_n) 453
Ete, + HeTe — Te; + Heg [Te) = PgL K3, exp(Tprs) 4.96
Ev,, + Heg — HaVr, [Vyd = Pug K{, exp(Tpk) 312+
Eyg,, +2Hgg ~ Helgr, (Herel = Phg Ky, exp('—E;'-'Fk) -0.42
Egg, + Heg — Hg [Hgy) = Pg K}, exp(lE.’I’.!x) 0.84, 0.98

* Experimental number from Vydyanath (1, 2].
** Calculated using tight binding Hamiltonian[6].

on the neutral native defects here, and the established or expected charge states of these
defects. In wide band gap materials the defects equilibration can be substantially affected
by the Fermi level; for example the formation energy of a donor will decrease when the
Fermi energy is near the valence band edge, since the donor electron can drop into a
vacant state near the valence band, thereby lowering the energy by ~ Eg. Because we are
discussing HgCdTe with a narrow band gap, we expect the Fermi effects to be small, but
not insignificant at high temperatures. Because of the small conduction band effective
mass, though, in n-type material the filling of the conduction band states by electrons
can shift the Fermi energy significantly; combined with the increase in the band gap for
the high temperatures at which most defect studies are done, the effective band gap can
be significantly larger than the usual 77 K bandgap associated with a given concentration
of HgCdTe.

First we consider the defects which accommodate excess tellurium, the first three
defects in Table I. The mass action constants are given by a product of the form

~AE

K; = Kle 1)

where AE; is the change in the enthalpy for the ith reaction. For the first three equations,
the K0 are given by

AS
K9, = Co(kT)'?(zmH‘)thexp(_l:’m) i @
0 5 3y, -6 ASte,
KTCM, = Co(kT) (21rmHs) h- exp(__k__l) ) (3)
and
A
K?‘e,=CO(kT)i(%mu,)ih'sexp(—sklﬂ) ) )
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Here T is the temperature in Kelvin, k is Boltzmann's constant, my, is the mass of the
mercury vapor atoms, h is Planck’s constant, AS; is the change in vibrational entropy
upon formation of the defect, and C, converts from site fraction to velume concentrations.
Because two unit cells of HgTe are destroyed when a tellurium antisite is created, compared
to one unit cell when a mercury vacancy is created, we do not expect that exp((ASTe“' -

ASVH‘)/kT) ~ 1. While we have not completed the evaluation of these entropy terms,

our preliminary estimates indicate this ratio is ~ 10-4. For the tellurium interstitial and
the mercury vacancy we expect that xp((ASTe‘ - ASVH )/kT) ~ 1 will be correct within
a factor of 10. Evaluating the numerical constants, we find

[Teng) .
lezw 10 (5)

and

ATel _ yp-18 (6)

{VH;]
for T=500 C and Py, = 1 atm. The conclusion from Equations 5 and 6 that the mercury
vacancy is the dominant native defect is consistent with experimental observation. This
conclusion is unchanged if we include the possibility that the species may be ionized at
the equilibration temperature where the material is expected to be intrinsic. Although
the tellurium antisite density decreases more rapidly with decreasing Hg pressure than
does the mercury vacancy density, the point at which the concentrations are comparable
1s at less than Py, =~ 10-10 atm, and certainly the HgTe phase boundary is reached before
such low Hg pressures can be achieved. This is also consistent with the fact that no p-
to-n conversion is observed for low mercury pressures, as would be expected if tellurium
antisites became the majority native defect. Because the pressure dependences of the
tellurium interstitial and the mercury vacancy concentrations are the same, the above
conclusion will hold independent of the mercury pressure.

We have checked the sensitivity of the calculated concentration ratios to the magnitude
of the reaction enthalpy. Because the enthalpies enter in the exponents, small changes
in the enthalpies will result in large changes in the predicted delect concentrations. For
example, let us assume that our calculated antisite formation enthalpy is in error by 0.5
€V, in this case the ratio of antisite to vacancy concentrations (at 500 C) will be reduced
to ~ 1.10-!1. For an antisite formation enthalpy in error by 1.0 eV, this ratio is reduced
to ~ 1 10-7. We do not expect the ASA errors to exceed 0.5 eV {5).

If the HgCdTe is not completely annealed, and tellurium precipitates are still present,
the defect equilibrium will not be that predicted by the mass action equations given in
Table I. For example, near the inclusions we can assume that the defects will be nearly
in equilibrium with the tellurium solid; thus

E’VH‘ + Tey = VH!Te o)
and
E'Te,,‘ + 2Tey — Tey gTe 8)

will be the appropriate reactions. The formation energies for a tellurium antisite and a
Hg vacancy from the tellurium solid are 1.63 eV and 1.15 eV, respectively. Although the

139




difference in the formation energies isless than when both defects are referenced to the
mercury vapor (~ 0.5 eV compared to ~ 2 eV}, the gas phase entropy factor does not
enter into the ratio of the defect concentrations. Using the same estimate of the entropy
ratio, the defect concentration ratio using tellurium solid as the reference state is

Va2 )

Thus, near the inclusions we expect higher relative concentration of tellurium antisites,
as compared to the rest of the material equilibrated with the Hg vapor. Additionally, the
absolute defect concentrations may differ substantially in the two regions of the material.
A better calculation of the vibrational entropy is needed before we can predict these abso-
lute defect concentrations. Differences in the defect concentrations arising from different
equilibration condition are a possible source of spatial variability of the HgCdTe material.
If the material is not fully annealed to equilibrium, for example because of an abundance
of tellurium precipitates, this history may affect subsequent processing.

In the above we have discussed the defect energies for HgTe and applied them directly
to the small x, Hg,_,CdxTe system. Because we are dealing with the native defects of an
alloy we expect a number of complexities to affect the above analysis. First the variation
of the defect formation energies for vacancies is sensitive to the alloy environment, in
particular for the vacancies of the nonsubstituted species, such as tellurium in HgCdTe
[6]. Even for vacancies of the substituted species, we have found the formation energies
may vary by several tenths of an electron volt. Because of this variation in the formation
energy, the fraction of defective sites will vary by as much as a factor of 100 from one
class of sites to the next. Consider various classes of Hg sites in ideal HgCdTe, which
can be distinguished to first order by specifying the number of Hg and Cd atoms in the
second neighbor shell (the four first neighbors are always tellurium), Hgn_dej, with a
concentration given by [j]. The total vacancy concentration is given by

12 -E.
[Vagl = Y UIPgL K exp() (10)
1=!

where E; is the vacancy formation energy for the jth cluster. The populations of vacancies
in each class of cluster, j, can be expected to differ because of differences in the cluster
populations, [j}, and the formavion energies, E;. Additionaily, the defect energy levels
may differ in the various classes of sites, possibly leading to different ionization states for
vacancies in different classes of sites. If the cations in the alloy are randomly arranged,
such differences may be difficult to infer experimentally. If, on the other hand, the cations
are correlated, exhibiting short range order, more complex behavior may be present.
Such short range order has been demonstrated using Raman scattering (7, 8], infrared
reflectivity [9], and nuclear magnetic resonance [10]. In these cases, the contribution
to the vacancy densities from the dominant class of clusters will be increased. Because
the studies finding short range order focus on the tellurium centered 5-atom clusters
of the form Hgy_,Cda rather than on cation centered clusters of the form Hg_,Cda,
higher level 5-atom cluster-cluster correlations must be known to predict the effects on
the vacancy populations.

Next we examine the defects which accommodate excess Hg in the solid. The existence
region for HgCdTe is always tellurium rich and thus the native defects which accommodate
excess tellurium are expected to dominate. For these equations in Table I, K’ ? is given by
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as
Keh=c;,l(kT)‘*(zme‘)-ih%xp(_E‘in) , (1)
AS
K3, = Cs'(KT)(2xmp,)-bSexp(—p 1) (12)
and
. n 3y3..ASH
Ky, = Co(kT) ™ (2rmyy)-Indexp(—7H) . (13)

If we assume the change in entropy is comparable for all three defects, we find

T—IT":/STJ ~10+M (14)

and

r[‘-}/%]]:lo“‘ , (15)

for T=500 C and Py, = 1 atm. From Equations (14) and (15) we see that the tellurium
vacancy, [V,], is a minority defect species. For the pressure and temperature considered,
the density of Hg antisites is predicted to be comparable to the density of Hg interstitials.
Because the ratio of [Hgp,] to [Hg;] is nearly unity, any errors in the calculation of the
activation energy could push the balance toward one side or the other. Thus we must
depend on the next generation of calculations, with the ASA removed and full relaxation
included plus a quantitative comparison of the entropy differences between the mercury
antisite and the tellurium interstitial, to determine the dominant defect in this class.

As mentioned above, we have shown that the tellurium vacancy formation energy
varies significantly with the alloy environment. Because the tellurium vacancy is not
expected to be a dominant defect in HgCdTe, and the tellurium diffuses by an interstitial
mechanism, we do not expect any measurable manifestation of this variation. On the
other hand, the Hg antisite may be the dominant Hg-excess defect, and its formation
energy may vary significantly with the alloy environment. We are currently calculating
the magnitude of this variation.

DIFFUSION

HgCdTe exhibits a complex tracer diffusion profile, with both a fast and a slow branch.
The fast branch is attributed to a vacancy and interstitial diffusion in parallel mechanism
where the dominant diffuser is determined by the pressure and temperature, while the
slow component fits a vacancy and interstitial in series mechanism {11]. The activation
energies for the fast branch are 2.10 ¢V and 0.61 eV for the vacancy and interstitial
mechanisms, respectively. Our calculated formation energy for the mercury interstitials
are 0.89 and 0.98 eV for the anion- and cation-surrounded tetrahedral interstitial sites,
respectively, and the experimental formation energy for the mercury vacancy is 2.24 eV.
Comparing these energies to the experimental activation energies we find close agreement,
indicating that the migration energy contribution to the diffusion activation energies are
small for both interstitials and vacancies.
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In a recent experiment on mercury diffusion in ion-implantation damaged HgCdTe,
an activation energy of several tenths of an electron volt was measured [12]. The dis-
parate result can be interpreted as a measure of only the defect migration contribution
to the diffusion activation energy, since defects in excess of the equilibrium concentration
were likely formed during implantation. It is not evident that the measured activation
energy corresponds to the vacancy or the interstitial mechanism. The conclusion that
the diffusion activation energies are largely defect formation energies, with the migration
energies being much smaller, is in agreement with the above interpretation of the Richter
and Kalish [12] experiment.

CONCLUSIONS

We have incorporated our calculated defect energies into the mass action equations
for the neutral defects in HgCdTe. In agreement with experiment, we find the mercury
vacancy to be the dominant native defect in tellurium rich material. We also find the
mercury antisite and interstitial defect densitities to be comparable, although a better
calculation of the vibrational entropy is needed to confirm this resuit. Comparing the
defect formation energies to the diffusicn measurements by Tang and Stevenson [11],
we find agreement with their diffusion activation energies for both the vacancy and the
interstitial mechanism, if we assume that the migration energy is small. Further work is in
progress to incorporate the defect charge states into the calculation, and also to calculate
the fully relaxed defect energies with the full potential LMTO.

The wark was supported by NASA contract NAS1-18226, by ONR contract N00OO14-
88-C0096, and by AFOSR contract F49620-88-K-0009.

REFERENCES

(1] H. R. Vydyanath, J. Electrochem. Soc. 128, 2609 (1981).

[2] H. R. Vydyanath, J.C. Donovan, and D.A. Nelson, J. Electrochem. Soc. 128, 2625
(1981).

(3] M.A. Berding, M. van Schilfgaarde, A.T. Paxton, and A. Sher, J. Vac. Sci. Technol.
A _8, 1103 (1990).

[4] A different reference is used here than was used in Table III in Reference 3. An error
appears in that table owing to the incorrect use of an energy of 2E,, per unit cell
rather than 4Ey,. The defect energies in Table I in Ref. 3 from which the energies in
Table III were derived, are correct.

(5] A. Sher, M. van Schilfgaarde, and M.A. Berding, presented at the 1990 HgCdTe
Workshop in San Francisco, CA, and accepted for publication in J. Vac. Sci. Technol.

[6] M.A. Berding, A. Sher, and A.-B. Chen, J. Appl. Phys. 68, 5064 (1990).

[7] P.M. Amirtharaj and F.H. Pollak, Appl. Phys. Lett. 45, 789 (1984).

(8] A. Compaan, R.C. Bowman, and D.E. Cooper, Appl. Phys. Lett. 56, 1055 (1990).

[9] L.K. Vodopyanov, S.P. Kozyrev, Y. A. Aleshchenko, R. Triboulet, and Y. Marfaing,
Appl. Phys. Lett. 56, 1057 (1990).

142




(10] D. Zamir, K. Beshah, P. Becla, P.A. Wolff, R.G. Griffin, D. Zax, S. Vega, and N.
Yellin, J. Vac. Sci. Technol. §, 2612 (1988).
{11] M.-F.S. Tang and D.A. Stevenson, J. Vac. Sci. Technol. 7, 544 (1990), and references

therein.
{12] V. Richter and R. Kalisk, J. Appl. Phys. 67, 6578 (1990).

143




Surface energies for molecular beam epitaxy growth of HgTe and CdTe
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We present results for the surface binding energies for HgTe and CdTe that will serve as input for
molecular beam epitaxy growth models. We have found that the surface binding energies are
surface orientation dependent and are not simply proportional to the number of first-neighbor
bonds being made to the underlying layer. Moreover, because of the possibility of charge transfer
between cation and anion surface states, one may have large differences between the binding
energy for the first and the last atom in a given layer, and these differences will be different for the
narrow-gap, less ionic materials than for the wide-gap, ionic materials. We also find that the
surface states associated with an isolated surface atom or vacancy are extended in materials with
small gaps and small effective masses, and thus call into question the modeling of surface binding

by simple pair interactions.

While considerable advances have been made in recent years
in molecular beam epitaxy (MBE) growth of HgCdTe,
modeling of the growth process is still primitive because of
the complexity of the process. One important input common
to all growth models is the binding energy of atoms to the
particular growth surfaces. These energies are usually ap-
proximated as being equal to the number of first-neighbor
bonds made to the surface times the energy per bond in the
bulk. We have shown' that thisis in fact a very poor approxi-
mation, and that the surface binding energies often differ
considerably from those estimates, and are sensitive to the
local surface stoichiometry. In this article, several implica-
tions of these results on the nature of the growth surface of
HgTe and CdTe and their alloys are discussed.

We have calculated' the surface binding energies in two
limits. The first is the concentrated limit in which the atomis
added to complete the surface layer, resulting in an ideal
surface. The second is the dilute limit in which an isolated
atom is added to an underlying ideal surface; this limit corre-
sponds to the initiation of a new layer. The surface binding
energies were calculated using a tight-binding Green's func-
tion technique that has been presented elsewhere.”* Surface
binding energies of the constituents in these two limits for
HgTe and CdTe were calculated for the (111)B and (100)
surfaces. Results are summarized in Table 1. Also shown for
reference are the experimental bulk energies per bond.

The results in Table I demonstrate that surface binding
energies are not proportional to the number of bonds made
to the surface. Because no in-plane bonds are made on the
(111) and (100) growth surfaces, this is evident by the fact
that the binding energies in the dilute ( £, ) and concentrated
(£, ) limits are not in general equal, as they would be if the
simple proportionality relationship held. Even when the di-
lute and concentrated energies are equal, as in the case of
tellurium on the HgTe (111)B surface, these energies are
not equal to three times the bulk energy per bond. Although
the surface binding energies are not linearly proportional to
the number of bonds being made to the surface, we do find
that averaging over the dilute and concentrated cation and
anion binding energies for a particular surface yields the co-
hesive energy per bulk layer, as it should.
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Differences in the £, and E, can be attributed, in part, to
charge transfer effects on the surface.'* Briefly, because the
anion surface states lie at lower energies than the cation sur-
face states, surface cations will always transfer charge to sur-
face anions, until all the surface anion states are fully occu-
pied. Thus, for example, for cadmium on the (100) surtace,
differences in the binding energies result because in the di-
lute limit the cation added to the surface can transfer charge
to the surface anions, thereby lowering the Cd surface bind-
ing energy, while in the concentrated limtit, no surface anion
states are available into which to transfer charge. In con-
trast, in the concentrated limit electrons must be promoted
out of the anion surface states (which had been transferred
there from other cations already present on the surface)
when the cation completing the layer is addcd Both of these
result in a stronger binding of the cation in the dilute limit, as
seen in Table I. This charge transfer effect will be largest in
1onic semiconductors with large band gap because of the
large difference in anion and cation surface state energies.

From Table I we note that on both the (111)B and (100)
surfaces mercury is more weakly bound in the dilute limit
than in the concentrated limit. As a consequence, the initia-
tion of a new layver of mercury atoms will be more difficult
than the completion of a mercury layer, and thus initiation of
islands in layer-by-layer growth will be disfavored with re-
spect to the completion of islands. The Te is strongly bound
to both the (111)B and (100) surfaces, indicating that the
tellurium-stabilized growth will be preferred.

For CdTe. we see that the nucleation of a new layer will
not be as troublesome as in HgTe, as indicated by the large
values for £, in Table I, while the completion of the surface
will be more difficult. This has an important consequence on
the nature of the growing surface. Because E,, < £ for Cdin
CdTe, the cations on the surface prefer to nucleate new lay-
ers, as opposed to completing layers. This can be interpreted
as an effective repulsive surface interaction among the Cd
atoms on the surface. This may have important conse-
quences on the growth of this and other wide-gap ionic mate-
rials such as ZnTe. Because the surface atoms prefer not to
sit adjacent to one another, there is the possibility of the
atoms on the surface forming a superlattice with the surface
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TasLE I Surface binding energes for P Te and CdTe (eV ).

(1B (100)
Dilute  Concen- Dilute  Concen-
trated trated Bulk
HgTe Hg -0.0 -03 ~00 —-10 - 0.82
Te - 28 - 28 -24 - 31
CdTe Cd - 22 - 1.3 -21 - 01 - 1.10
Te -52 -21 - 50 - 20

vacancies. This phenomenon has been predicted and ob-
served on GaAs, where the same mechanism is responsi-
ble.** The nature of this surface superlattice will depend on
the particular surface, the magnitude of the energy differ-
ences between E, and E,, and the temperature of the grow-
ing surface.

Because the surface binding energies are dependent on the
surface stoichiometry in so far as it controls the states avail-
able for charge transfer, we expect the contributions to sur-
face binding energies to change relatively abruptly at scme
specific surface coverage. As an example we consider the
addition of Cd to the (100) surface of CdTe. As discussed
above, when an isolated Cd atom is added to the surface, the
binding energy is lowered because of the charge transfer to
adjacent Te atoms, while when Cd is added a to nearly com-
plete Cd surface, the binding energy does not benefit from
such a charge transfer because there are no empty Te surface
states. At 50% surface coverage, the number of Cd and Te
surface states will be equal, with the lower-energy Te states
being completely filled and the higher-lying Cd states being
empty. Now we consider an arbitrary intermediate surface
coverage to determine if the Cd surface binding energy will
benefit from a charge transfer to adjacent Te. If the surface
coverage is below 509, empty Te states will still be available
for charge transfer, while above 50% coverage, all Te states
will be already full. Thus, near 50% we expect the value of
the surface binding energies to change rather abruptly, with
binding energies below 509 coverage being closer to E, and
binding energies for coverages above 50% being closer to E,.
The situation is similar for other polar surfaces. For exam-
ple. for addition of Te to the (111)B surface the changeover
between dilute-like and concentrated-like binding energies
occurs at 75% coverage. This is because the density of sur-
face states per cation on the surface is three times the density
of surface states per anion. Thus, when the surface is 75%
anions. the density of cation and anion surface states will be
equal, and full charge transfer will occur. This is similar to
the results found by Chadi* and Tong er al.* for GaAs.

Because the charge transfer depends on the band gap of
the material, we expect the behavior in HgCdTe and
HgZnTe with band gaps in the infrared to have effective
attractive surface interactions. This is consistent with pre-
liminary calculations using the supercells/slab method.”
Thus, at sufficiently low temperatures, although higher than
temperatures for which surface diffusion is too slow for sur-
face equilibration, the surfaces will grow via the formation of
smooth 1slands of like atoms. As the surface temperature is
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raised, entropy will dominate and the surface will be rough,
with smooth islands being replaced by disordered, randomly
arranged atoms.

The lateral extent of the surface states produced by an
1solated surface atom or vacancy is found to differ for HgTe
and CdTe. This has been demonstrated using the same tight-
binding Hamiltoman in a slab calculation® and in a Green's
function calculation. In the slab calculation, surfaces are
modeled by constructing multiple layers of the semiconduc-
tor and vacuum, where the number of vacuum layers is large
enough to completely decouple the two surfaces and the
number of semiconductor layers is chosen large enough so
that the center layer looks bulk like. In the Green’s function
method. a truly semiunfinite surface can be created. Al-
though the slab method does not mimic a real surface as well
as the Green's function calculation, it permits the calcula-
tion of the formation energy for a periodic array of defects.
To examine the in-plane coupling of the vacancies. a regular
array of Hg atoms was removed from the (111)A HgTe
surface, where each surface vacancy created was compietely
surrounded by atoms. This removal energy per atom 1s ex-
pected to be equal to — E_, if the wave functions are local-
1zed at the removal site. However, we find that the energy
required ( per atom from a unit cell of four atoms) to remove
aregular array of Hg atoms from the (111) HgTe A surface
differs substantially from — E_. When the size of the super-
cell is increased to include nine atoms, the calculated energy
(per atom) is larger than the previous one but still smaller
than E, . This is because the created surface vacancies are far
from each other and consequently couple less when com-
pared to the previous case. However, when these calculu-
tions were repeated for removal of cations from CdTe and
ZnTe surfaces, the removal energies calculated with nine
atoms per unit supercell agreed exactly with E_. It suggests
that the surface wave function is well extended on HgTe
surfaces, but terminates near the third neighbor on CdTe
and ZnTe surfaces. Whenever surface wave functions have a
large spatial extent, coupling substantially to one another,
the removal energies per atom will be affected.

The difference in spatial extent on HgTe and CdTe sur-
faces can be understood from the complex band structure of
these materials. The complex band structure is the relation-
ship between real energy and complex states’ and connects
the real bands through the forbidden gap in the complex
wave vector plane. In the region of fundamental gap, the
complex bands start from valence and conduction band
edges and meet at a branch point in the complex plane. The
extent of the wave function decreases exponentially with the
magnitude of the imaginary part k, of this branch point.
When the hole mass is much larger than electron mass, it can
be found that &, is directly proportional to conduction band
effective mass and band gap. Consequently, for HgTe in
which both band gap and electron mass are very small, the
surface wave functions are well extended. In the case of
CdTe and ZnTe, with large gap and large effective mass, the
calculated &, is large and wave function is less extended.

We conclude by noting several features of the surface
binding energies that must be incorporated into any MBE
grov.:n model. First, surface binding energies are surface
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orientation dependent and are not simply proportional to the
number of first-neighbor bonds being made to the underly-
ing layer. Moreover because of the possibility of charge
transfer between cation and anion surface states, one may
have E, < E. or E, > E,, where the former will occur mostly
for wide-gap 1onic compounds and the latter for narrow- (or
zero) gap, less ionic compounds. Finally, because the sur-
face states associated with an isolated surface atom or va-
cancy are extended in materials with small gaps and small
effective masses, the approximation of surface binding using
simple pair interactions is highly suspect. We expect that the
narrow-gap semiconductors HgCdTe and HgZnTe will be-
have more like HgTe than CdTe
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SURFACE ENERGIES AND ORDER-STATE: EFFECTS ON SEMICONDUCTOR GROWTH
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The energies to remove atoms from various surfaces of semiconductors have been calculated using a new
Green's function formalism. By comparing the energy to remove atoms from a nearly completed (con-
centrated) surface, E¢, and from a nearly empty (dilute) one, E4, we can deduce the surface interaction
energy. We find that E. and E4 differ significantly even when there are no first-neighbor bonds. Because
an important contribution comes from charge transfer, Ec — Eg4 is positive (indicating attractive interac-
tions) for pure covalent and narrow gap materials, and may become negative (repulsive surface inter-
actions) for wide-gap ionic materials. For attractive interactions,below a critical temperature, T, the
equilibrium surface atoms collect in islands and two-dimensional layer-by-layer growth can occur. Above
T, rough three-dimensional growth is the rule. When E. - E4 is negative, there is also a critical tempera-
ture, T¢, below which the atoms and vacancies arrange into regular arrays. Calculated energies and
temperatures are given for Si, GaAs, CdTe and HgTe on the (111), (111), (110), and (100) surfaces.

1. INTRODUCTION

Properties of semiconductor surfaces during
epitaxial growth are sensitively dependent on the
nature of the interactions between surface atoms.
When the interaction between the atoms is attrac-
tive, the surface grows with formation of islands at
temperatures below a critical temperature, T,
known as roughness transition temperature. How-
ever, when the interaction between the atoms is
repulsive, the surface undergoes an order-disorder
transition. At growth temperatures below the
order-disorder transition temperature, Tg&, surface
atoms and vacancies arrange themselves in a
superlattice pattern that minimizes the number of
atom-atom pairs. Regardless of the nature of the
interaction, the sites are occupied uniformly at
growth temperatures well above the corresponding
critical temperature.

Growth by low-temperature epitaxial methods
such as atomic-layer epitaxy (ALE) and molecular-
beam epitaxy (MBE) is believed to take place
under nonequilibrium growth conditions.!-2 How-
ever, when the surface relaxation rate is much
larger than the arrival rate, each surface atom will
have enough time to minimize its free energy
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before the armival of the next atom, so that a ther-
modynamic model can be expected to qualitatively
describe the morphology of the growth surface.
Statistical models with various degrees of approxi-
mations are frequently used to study the nature of
the surface.3-5 In this paper, we extend the studies
to consider the surface arrangement of vacancies in
a zinc-blende lattice. We obtain the strength of a
pair interaction on various ideal semiconductor
surfaces using the tight-binding Green's function

method.6-7 The pair interaction energies are then
used in a thermodynamic model to obtain the

minimized free enzrgy. The qualitative nature of
various surfaces is discussed.

2. PAIR INTERACTION ENERGIES

The surface sublimation energies for various
surface orientations are obtained using the iight-
binding Green's function (GF) method. Because
the details of the calculational procedure have been
published elsewhere,6-8 this discussion will be
brief.

We define surface sublimation energy (SSE) as
the difference between the total energy of a surface
plus a free atom and that of the surface with the
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atom bonded to it. In this convention, a positive
SSE means that atoms will require energy to go
from surface to vapor. The calculat.on of SSE pro-
ceeds in two steps. First, the GF for an ideal atom-
ically smooth surface is calculated in terms of bulk
GF, using Dyson's expansion. The modified GF
with an atom added to or removed from the surface
is then calculaizd in terms of surface GF. The
change in density of states introduced by perturba-
tions is used to obtain the electronic energy contri-
bution to SSE.

The perturbation to the surface that includes the
removal of an atom, leaving a surface vacancy, is
referred to as surface sublimation from a concen-
trated surface and the corresponding SSE is deno-
ted as E.. This removal entails breaking bonds
witlt the layer below and in-plane and, sometimes,
breaking second-neighbor surface bonds. The
perturbation to the surface that involves the re-
moval of an atom and leaves an ideal flat surface
is referred to as sublimation from a dilute surface
and the corresponding SSE is denoted as E4. Here,
the removal necessitates breaking bonds with the
layer below only.

In this model, it is clear that the effective atom-
atom pair interaction energy, £0, between atoms on
the surface is simply (E; — Eg)/ N0, where Mg is the
number of near-neighbor surface bonds. A posi-
tive (negative) €0 implies an attractive (repulsive)
interaction between surface atoms. Calculated
values of E¢ and E4 are given in Table I for (111),
(111) and (100) surfaces of silicon, GaAs, CdTe
and HgTe. Notice that the (111) surface can
terminate either with triply bonded cations or with
singly bonded anions. The opposite bonding
arrangement is found in the [111] direction.

Intuitively, one would expect E. > E4. The
remnoval of an atom from the concentrated limit, in
addition to breaking interlayer bonds, requires the
breaking of in-plane surface bonds, which are first-
neighbor bonds for the (110) surface and second-
neighbor bonds for the other surfaces. Even in the
absence of first-neighbor bonds on the surface, the
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surface dangling bends in the concentrated limit
interact to form a partially filled band, which low-
ers energy. When a surface atom is removed, the
removal of an electron from these broadened sur-
face states will in general require more energy than
if the dangling states were isolated, as in the dilute
case. As seen from Table 1, this chnventional
interpretation explains the trends observed in sili-
con, HgTe, and in GaAs in most cases. However,
for other cases, we find that £ - is smaller than Eg4.
In order to understand the mechanisms that
drive some semiconductors to have E. < Eg, we
examine the nature of the anion and cation surface
states. As an illustration, we choose the (111)
surface of CdTe where E; is less than E4. The
surface density of states for two ideal surfaces, the
Cd- and Te-terminated (111), are shown in Figure
1. For an unreconstructed surface, some of the
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FIGURE 1

Density of dangling hybnd states of Te (dashed) and
Cd (soiid) for (111) oriented CdTe. Em is the highest
occupied level for Cd terminated (111) surface.

surface states normally lie in the fundamental gap.
Compounds have both cation- and anion-derived
hybrid surface states, but the cation-derived states
most often lie higher in energy. The energy
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exception. Owing to an increased ionicity in 0-VI
compounds, the energy separation between the
dangling states is large. As illustrated above, the
effect of the charge transfer is substantial in CdTe
and in most cases causes E. to be less than E4.
Although HgTe is a II-VI compound, the charge
transfer does not occur because it is a semimetal
with no forbidden gap.6.7

From Table 1, we conclude that Si, HgTe, and
most GaAs surfaces will exhibit smooth to rough
transitions while most of the CdTe surfaces and the
singly bonded, gallium-terminated (111) surface
will undergo an order-disorder transition. During
growth, the actual nature of a surface will be deter-
mined by the growth temperature with respect to
the critical temperature.

3. RESULTS AND DISCUSSION

In ALE, grown from a free atom vapor phase,
only one type of atom species (anion or cation) is
present at any given time. The atom-atom pair
energies calculated in Section 2 can be used in a
single-layer growth model to obtain minimized
free energy as a function of layer coverage, x. At
temperatures below T, the growth will take place
with the formation of islands, and atomic concen-
tration in those islands will be given by the location
of multiple minima in the curve of x versus free
energy. At temperatures well below T, the
minima lie near x = 0 and x = 1. In these cases,
islands on the surface are nearly fully occupied and
the remaining area is nearly empty. As the surface
coverage is increased, the islands grow in size with
a fixed vacancy concentration until the layer is
fully grown, i.e., two-dimensional, layer-by-layer
growth.

Because the (100) surface is a square lattice, the
exact value of Tc = 0.57 gg/kp given by Onsagar3
is used, where kg is Boltzmann’s constant. For the
hexagonal lattice, observed in the (111} orien-
-ation, the exact valuell of T, is 0.91 €9/ kp. The
calculated T, are given in Table 2 for Si, HgTe,
and most GaAs surfaces. T, is much larger than
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the typical growth temperature for these elements
and compounds [except for the (III) Te-
terminated HgTe surface]. Thus, ALE growth of
these materials is dominated by the formation of
nearly perfect islands.

When the interaction between surface atoms is
repulsive, as in a Ga-terminated (111) GaAs
surface and all CdTe surfaces, the free energy of a
homogeneous surface always remains negative
with one minimum. However, these surface
energies may reduce the free energy with ordered
arrangement of atoms and vacancies. The nature
of the superlattice arrangements below T¥ and the
area of different superlattices depend on the growth
temperature and surface coverage. For example, at
temperatures well below T¥ for a square lattice of
50% coverage, the superiattice pattern will look
like a checkerboard, where every near-neighbor
site of an atom (vacancy) is occupied by vacancies
(atoms). This type of arrangement can be
envisioned for a monolayer growth on (100)
orientations. T ¥ calculated using Onsagar's result
for (100) surfaces and that using an exact value!2
of 0.35 go/kp for (111) orientations are given in
Table 2. We see that the calculated temperatures
are well above the typical ALE or MBE growth
temperatures for these compounds [except for the
(111) Ga-terminated GaAs surface]. Hence, the

TABLE 2. Transition temperatures in Kelvins.
Parentheses show number of bonds broken with
layer below.

Orien- r':zved Si |GaAs |CdTe |[HgTe
tation atoms T K |T.K |TcK T K

(111) a(1) 3700 2600}  500| 3500

c(3) | 3900, 200/ °1400{ 2400

I a(3) 3900 700[ -2100 0

c(1) 3700 410] °600{ 900

(100) a(2) 3200{ 2200 *4000{ 1200

L c(2) 3200] 1700 °3300] 2200

*Order-disorder transition temperature




partly filled growth surface is expected to exhibit
superlattice arrangements with atoms and
vacancies.

In MBE where both species are present, simul-
taneous growth of an anion-cation double layer can
be expected. We extend our model to study the
double-layer growth of semiconductors with zinc-
blende lattice. The intralayer pair interaction ener-
gies deduced for the single-layer growth model are
still valid. The interlayer anion-cation pair inter-
action energies are simply £4/M1, where 11 is the
number of interlayer near-neighbor sites. We
define an anion-stabilized growth to be the case
where relative anion and cation fluxes are such that
any exposed surface atoms are anions. When the
interaction between the atoms in the upper layer
and that in the lower layer is strong (compared
with kTy), the surfaces always grow in the smooth
limit. (100) surfaces of HgTe and GaAs and all
surfaces of Si are predicted to fall into this categ-
ory. However, when the interaction between adja-
cent layers is not always strongly attractive, as in
the case of (111) HgTe and (111) GaAs surfaces,
the nature of growth depends on whether the
surface is anion or cation stabilized.

The free energy calculated in quasi-chemical
approximation (QCA)!3 at a growth temperature of
185°C for Te- and Hg-stabilized (111) surfaces is
plotted respectively in Figure 2(a) and (b) as a
function of Te and Hg surface concentration. Each
corner of this plot represents the surface fully
covered by the element noted there. In ALE,
growth takes place along the sides. Whenever the
minimum occurs between the two comers, that
surface is predicted to grow in the rough limit
where atoms and vacancies randomly occupy the
surface sites. Whenever the minima occur near the
comners, the surface is predicted to grow in the
smocth limit with formation of nrearly perfect
islands. In MBE where both species are present in
double-layer stochastic growth of compounds, the
above arguments are applied to the free-energy
curve along the diagonal line connecting the origin
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and upper-right comer. Accordingly, we see from
Figure 2 that, while ALE growth of the Hg and Te

FIGURE 2
(a) Free energy for Te-stabilized surface (111)
surface of HgTe at 185°C temperature as a
function of Hg and Te surface concentrations.
(b) Free energy for Hg-stabilized surface (111)
surface of HgTe at 185°C temperature as a
function of Hg and Te surface concentrations.

layer takes place in the smooth and rough limits,
respectively, MBE growth of the Te-stabilized
surface takes place in the smooth limit. This is
because the pair energy for Te (upper layer)-Hg
(lower layer) is strong, 0.9 eV. However the Hg-
stabilized surface grows in the rough limit because
the Hg in the upper layer is weakly attracted to Te
below (nearly 0 eV ) and atoms do not congregate
into islands to maximize the cation-anion pairs.
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4. CONCLUSIONS

We have calculated intralayer and interlayer
atom-atom pair interaction energies using a tight-
binding Green's function method. The calculated
values imply that sublimation energies do not
increase linearly with number of broken bonds.
Also, the sublimation energy depends on the cov-
erage. The possibility of repulsive surface interac-
tions due to a charge transfer mechanism is predic-
ted. These energies are then used in a thermodyna-
mic model to study the nature of growing surfaces.
As the growth temperature is varied, attractive
interaction between surface atoms leads to smooth-
to-rough transition, and Si, HgTe, and most GaAs
surfaces are calculated to fall in this category. The
repulsive interactions lead to superlattice ordered-
to-disordered transition, and (111) GaAs and most
CdTe surfaces are expected to be in this category.
Smooth or rough surface growth is found to be
decided by in-plane interactions in an ALE growth
and is also influenced by interplane interactions in
double-layer MBE growth. In our calculations of
pair energies, we considered only ideal surfaces.
The critical temperatures and other conclusions in
this paper, can, at best, be expected to represent the
trends. Nonidealities such as reconstruction,
dimerization, relaxation of adatoms and of surface
can lower surface energy substantially.14.15 For
quantitatively more accurate values, the effects of
these mechanisms on the values of (E. - Eg) and
statistical approximations that are better than QCA
with pairs will have to be included.
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ABSTRACT

We have examined the prospects of Inj.xTIxSb as a long-wave infrared (LWIR)
material for focal-plane array applications. We find there is a near bond-length match
between InSb and TISb in the zinc blende phase, the cohesive energy is typical of InSb,
and the concentration x needed to narrow the gap into the LWIR range is about 10 £ 5%.
The calculated phase diagram shows a wide temperature range where this alloy is itable.
While this diagram shows that the alloy cannot be grown from the liquid phase, growth
should be possible in a vapor-phase process.

We have investigated the prospects of In}_xTIxSb as an IR detector material with a gap that can
be adjusted to zero just as that of Hg).xCdxTe. In the search for a III-V compound-based alternative to
Hg1.xCdxTe for long-wave infrared (LWIR) focal-plane arrays,!2 a number of materials are currently
under investigation, including InAs;.xSbx based layer superlattices! and Alj.xGaxAs based quantum well
structures.? InSb is often used in mid-wave infrared (MWIR) devices, but its bandgap is too wide to
respond in the LWIR. The alloy InSbj.xBix has been examined3+ as one with an adjustable narrower gap
that might serve the purpose. However, BiSb does not form in the zinc blende (ZB) structure® and the
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alloy is not miscible in equilibrium. It has been prepared by Ag ion-assisted epitaxy, but no practical
growth system has evolved from this work.

We have theoretically examined Inj.xT1xSb based on a combination of full-potential linearized-
muffin-tin orbital approximation (FP-LMTQ) whose accuracy is limited only by the local density
approximation (LDA)$ and a parametrized calculation of the In].xTxSb liquid-state free energy. Details
of these calculations will be presented elsewhere. Here we summarize only the results relevant to the IR
community.

Table 1 contains the atomic volume €2, cohesive energy per cation E, bulk modulus B, one shear
coefficient C11-Cj2, and the bandgap Eg for the materials HgTe, CdTe, InSb, and TI1Sb. For InSb and
TISb the calculations are presented for both the ZB and CsCl crystal structures. Other structures were

also examined, but their cohesive energies are small. The HgTe and CdTe ZB numbers were done for
comparison.

Table 1

Calculated and experimental optical and structural properties for CdTe, HgTe, InSb, and TISb in a AB
lattice at 0 K. Atomic volume Qis in A, cohesive energy per cation E and bandgap EgareineV;C11-C)2
and bulk modulus B are in 1012 erg/em3. Calculated values for InSb in the CsCl and TISb in both ZB and

CsCl! lattices are shown. Column Adj adjusts the calculated values of TISb in the ZB structure for errors in
the LDA.

CdTe HgTe InSb TISb
ZB | Calc | Expt | Calc| Expt | Caic | Expt | CsCi| 28 | Adj | csCi
9 3340 | 342 | 342 | 334 | 34.1 338 | 256 | 364 27.1
E 528 | 440 | 424 324 | 645 | 560 | 6.08 | 570 5.79 :
Ci-Ci2| 020 | 0.7 019 | 0.18 0.31 0.31 0.17
B 044 | 042 | 044 | 047 | 045 | 048 | 072 ] 0.38 0.49
Eg 054 | 160 | -095| -030 | -046 | 0.26 220 | -15

A number of important points can be deduced from Table 1.

« For HgTe, CdTe, and InSb where experimental numbers are available,’ the calculated
structural properties 2, B, and C11-C)2 agree well with experiment. E values are generally
slightly high, because the free-atomic energies are not done well in LDA. However,
differences between solid energies are reliable. The bandgaps are always too small in LDA,
but the reasons are well understood and, once again, reliable adjustments can be made.

- In agreement with experiment,5 we find the TISb ground state is the CsCl structure, but the
energy difference with the ZB structure is small—88 meV. The energy difference for InSb
favors the ZB structure by 380 me V.

6 M. Methfessel and M. van Schilfgaarde, unpublished.

7 K.-H. Hellwege, editor-in-chief Landholt-Bornstein: Numerical Data and Functional Relationships in Science
and Technology, Vols. 17 & 22, Springer-Verlag, Berlin, Heidelberg, New York (1982).
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»  For the ZB structure, the atomic volumes of InSb and T1Sb are small, corresponding to a bond
length difference of 2.1%. Thus, they are matched nearly as well as Hg.xCdyTe.

« The adjusted zero-temperature bandgaps of the InSb (0.26 eV) and TISb (-1.4 eV) are such
that the concentration needed fora 0.1 eV gapis x =0.09. At 77 K, we estimate x < 0.15
will bring the gap into the LWIR range. These numbers are the most uncertain of those
presented.

» The predicted cohesive energy per cation of the Ing 9Tlg,1Sb is 6.38 eV, compared to 5.05 eV
for Hgp 78Cdg22Te: it is 26% more strongly bound.

+ Even assuming no bandgap bowing, dEg/dx is comparable for InT1Sb and HgCdTe alloys.

Thus, the In}.xT1xSb alloy looks like a viable LWIR material if it can be prepared in the ZB structure
with high enough concentration. We address that issue next.

Our calculated phase diagram of In}.xTlxSb is shown in Figure 1. The lower part of the diagram,
that below the solidus curves, is based on our FP-LMTO results and is likely 1o be accurate. The solidus
and liquidus curves are based on some liquidus properties that have been projected from the measured
properties of InSb, and a theoretical estimate of the melting point of TISb in the CsCl structure. The
melting point of InSb is 808 K.7 the calculated eutectic temperature and composition are 687 K and 0.68,
the point at which the ZB miscibility curve intersects its solidus is at 700 K and 0.16, the point at which
the CsCl strikes its solidus is 700 K and 0.99, and the melting point of the TISb in the CsCl structure is
747 K. Itis evident from this phase diagram that growing the proper alloy from the melt is impossible,
which is in agreement with reported experiments.8.9

There is, however, a substantial temperature range where the proper alloy composition is stable
and it should be possible to grow the material either by molecular beam epitaxy (MBE) or metal organic
chemical vapor deposition (MOCVD) techniques. One attempt to grow the material by MBE failed, 10 but
that was done without the benefit of the information in Figure 1.

Finally, we conclude that the In}.xTlxSb alloy should be stable in the concentration range needed
for LWIR focal-plane arrays, and because the proper composition is mostly InSb, it should process in
much the same way. However, this remains to be tested once the material is prepared.

Acknowledgments: We wish to thank A.T. Paxton, G. Cinader, and A. Sanjurjo for helpful
suggestions and iniormation. We also are indebted to ONR through Contract NOOO14-88-C-0096 for
partial support of this effort.

8 SB. Evgen’ev, O.V. Sorokina, and V.G. Zinov'ev, Inorganic Materials 21, 1747 (1985); O.V. Sorohina, S.B.
Sorokina, and 1.V. Maschenko, Russ. J. of Inorganic Chem. 28, 916 (1983).

9 V.1 Fedorov and V.1. Machnev, Teplofizika Vysokikh, Temperature 8, 447 (1970).
10 C.E.C. Wood, A. Noreika, and M. Francombe, J. Appl. Phys. 59,3610 (1986).
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Figure 1. Phase diagram of iny_xTIxSb. For x << 1 the zinc blende structure is stable, and for x = 1 the
CsCl (ce) structure is the more stable one. The eutectic pointis x = 0.675 and T = 687 K.
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I. Introduction

1. GOALS

The goals of this paper are to review the current state of knowledge of the
elastic constants of elemental, compound, and pseudobinary alloy semicon-
ductors. To accomplish this objective, we will review

-experimental methods currently used to measure elastic constants,
experimental results,

-binding and elastic constant theory, and

‘related mechanical properties.

Heavy emphasis is placed on comparisons between theory and experiment,
and the accuracy of approximations currently in vogue. The theories dis-
cussed range from first-principles methods, requiring heavy comutations, to
parametrized physical models. The intent is to identify a logical path between
these extremes, and thereby provide insight into the connection between
atom potentials and semiconductor mechanical properties. In the course of
this presentation, there are a number of instances where improvements in the
theory or additional experimental results, are needed. We have tnied to
highlight these situations and suggest possible remedies.

2. DEFINITION AND CALCULATION OF ELASTIC CONSTANTS

The theory of elasticity of solids has been well formulated in many treatises
(Love, 1944; Landau and Lifshitz, 1959), so we need not review the different
formalisms and conventions. However, as we do wish to present a coherent
account of the essence of the theory, it is necessary to define terms and
describe general calculations to be used later.

In linear elasticity theory, deformation is assumed to be infinitesimal. The
relative displacement vector %' between two points in a deformed solid is
related to the corresponding vector % in the undeformed solid by the
following equation, in component form, through a nine-component strain
Sensor &:

Xy = Xq + ZgEapXp- (D)

The change in the internal energy associated with ¢ is also small and will be
denoted UV, where V is the equilibrium volume of a solid. Under the
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condition that the entropy and the electrostatic displacement field are
constant, U is only a function of ¢, and is quadratic in ¢:

U= %zaﬂuvscﬁcduveuv’ 2

where C,q,, are the elastic stiffness coefficients, which are characteristic
properties of the solid. From this definition, C,, .5 = C,4,. is required for U to
be an analytical function of &. Moreover, C,,, = Cy,,, = Cyp,, 15 also
required to ensure that U is zero under any infinitesimal rigid rotation. In
light of these properties, the energy density can be expressed in terms of a
symmetrical strain tensor 7 as

U = %Zaﬂuvnaﬂccﬂuvnuvs (3)
where 1,4 is defined as
Nap = HEap + €5a)- 4)

The strain tensor 7 is a thermodynamic parameter with stress tensor ¢ as its
conjugate variable (Brugger, 1964). The components of ¢ are given by

ou
a"aﬂ

Gaﬁ = = zavcuﬂnvnpv . (5)

It is clear that o is also a symmetrical tensor.

The most frequently used notation is the engineering convention, in which
the strain tensor e is related to n of Eq. (4) by e,, = 1., for the diagcnal
components, but e,; = 2n,, for « # f. Furthermore, since e has at most six
independent components, it is treated as a six-component vector, with the
vector components 1 to 6 corresponding respectively to the tensor compo-
nents xx, yy, 2z, yz, xz and xy. In terms of e the strain energy density is written
as

U = %z‘j C"je,'ej, (6)

where C;; can be identified as C,,, With i = «f and j = puv. Because C;; is
symmetrical, it has at most 21 independent components for any crystal.
Crystal symmetries reduce this number further (Love, 1944; Ashcroft and
Mermin, 1976). For a cubic lattice, to which class the zincblende and
diamond semiconductors belong, there are only three independent compo-
nents, namely C,,, C,,, and C,,.

158




4 A.-B. CHEN, ARDEN SHER AND W.T. YOST

The three independent elastic constants of the diamond and zincblende
(zb) semiconductors can be calculated by considering the following three
strains.

(i) Under a uniform expansion, which changes a displacement X into
X' = (1 + e)X, then e, = e; = e; = e and the other strain components are
zero; the elastic energy density is then given by

U = 3(C11 + 2C12)ez/2. (7)

U can also be expressed in terms of the adiabatic bulk modulus B defined by
0P = —~B(6V/V), where V is the crystal volume, 8V is its change, and OP is
the corresponding pressure change. The result is U = B(6V/V)?/2 = 9Be?/2,
because the dilatation is 6V/V = 3e in the present case. This establishes the
relationship

B=(C,, +2C,,)/3. (8)

(i1) The next case to consider is a tetragonal shear strain e which changes a
displacement according to

(x,y,2) = (x + ex, y — ey, 2). %)
The only nonzero strain components are e, = —e, = e. Then U becomes

(iii) To calculate C,, we consider a shear strain e that changes a
displacement according to

(x,y,2) > (x+ey/2,y + ex/2,2). (1D

This strain contains e, as the only nonzero component. Because C 4, equals
Cee, the energy density is simply

U= C.e2. (12)

Although the macroscopic crystal distortion of the Bravais lattice caused
by this strain is described by Eq. (11), microscopically there is a relative
displacement & = (0, 0, u), the so-called Kleiman (1962) internal displace-
ment, between two successive atomic planes perpendicular to the z axis. In
other words, the relative displacements between the atoms on the same fcc
sublattice are governed by Eq. (11), but there is an additional induced relative
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A

Fi1G. 1. Distortion of a tetrahedron corresponding to the C, elastic constant; u is the internal
dispacement between the anion and cation sublattices.

displacement & between the two sublattices. The directions of the displace-
ments of atoms in a tetrahedral cell are shown in Fig. 1. In calculations one
can use an arbitrary infinitesimal pair of ¢ and u to obtain the coefficients in
the following quadratic expansion of the strain energy density:

U = ®u?/2 + Deu + CQe?/2, (13)

where the force function @ is related to the transverse optical (TO) phonon
frequency w at I (the center of Brillouin zone) by ® = uw?, with u being the
reduced mass. In Eq.(13), D is a constant, and C) would be the shear
stiffness coefficient if the internal displacement were not allowed. Kleiman
(1962) defined an internal displacement parameter that is related to the
equilibrium value of u by u = {ae/4 for a fixed e, where a is the lattice
constant. Taking the first derivative of U with respect to u in Eq. (13) and
setting it equal to zero, one finds that the { value is given by

{ = —4D/(a®d). (14)
Finally, the sought-after C,, is given by
Cas = CQ — [2a%0/16. (15)
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Thus, the internal displacement is an essential part of C,,. These procedures
will be used in the theoretical calculations to be presented in subsequent
sections. :

3. ELASTIC CONSTANTS AND SONIC WAVE PROPAGATION

The purpose of this section is to give the reader sufficient information to
measure ultrasonic wave velocities and to deduce from them the elastic
coefficients of materials of interest to the electronics industry. We start from
the definition of strain and develop equations that relate the elastic coeffi-
cients with wave propagation velocities in various crystallographic direc-
tions. The cases taken as examples, cubic and i1sotopic, were chosen because
of their prevalent role in electronic materials.

A number of techniques used to measure wave propagation velocities in
materials are discussed. The researcher’s decision on technique depends upon
a number of factors, such as accuracy needed, size and crystallographic
orientation of available samples, equipment, etc. Sample preparation is
significant, since a carelessly prepared sample yields useless velocity data.
Because the equipment needs vary widely among the techniques that can be
used, references containing information on each technique are given. Key .
papers chosen for citation were picked for their readability and their direct
application to the measurement technique. Primary emphasis has been given
to techniques that are generally accepted and that give results that are
understood. Throughout this section a general theory of elasticity due to
Murnaghan (1951) is used.

a. Elastic-to-Wave Relationship

Consider, as before, a point in a lossless elastic medium at rest, whose
displacement vector, X = (x,), « = 1, 2, 3, are the cartesian coordinates of a
point in the medium. In the presence of a stress wave disturbance, the point
moves to a new iocation, X' = (x,) at time t. The Lagrangian strains, 7,
defined consistently with Egs. (1) and (4) but with higher-order terms
retained (Landau and Lifshitz, 1986; Murnaghan, 1951), are as follows:

1 (dx, 0x,
v =3 <6x“ ox, B 6‘") (16) :

where 6,, is the Kronecker delta. Einstein summation convention over
repeated indices is used in this section.
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1. ELASTIC CONSTANTS AND THEIR ALLOYS 7

By considering the internal energy per unit mass of the medium
E(x,, n,4, S), where S is the entropy, we obtain a relationship between wave
propagation and the internal energy of the medium. If we restrict this
discussion to a medium that is initially unstressed, then the internal energy
per unit volume of the mediam is poE(r,, 1,4, S), where p, is the mass density
of the medium in the unstrained state. By expanding this in a power series of
the Lagrangian strains, we obtain

1 1
poE(X,, naﬁ’ S) = pOE(xa’ 0’ S) + 5 Cuvcﬁnuurlaﬁ + 5 Cuvaﬂyd"yv"cﬂnyé + -
(17)

The coefficients C, .5 and C,,.4,s are the second-order and third-order elastic
coefficients (adiatatic) as defined by Brugger (1964):

¢’E
Cuvaﬂ - pO <5r"“anuﬂ) y (18)
S’E
= ) 19
Cyvaﬂyd pO (5%\.617,55?],; ) ( )

The wave equation can be derived (Goldstein, 1965, p. 347) from Lagrange’s
equation

d (dL d oL 0
E(?Z)J'ZZ a(‘zﬁ> —a£=0, (20)
0x,
where x, = 0x,/0t and L is given by
L = }poti,ti, — PoE(Xy, Map, S)- 21
Defining the particle displacement vector, u, as
u,(f, 1) =x, - x,, (22)
and differentiating it gives
SRt @
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Combining Eqs. (22), (23), and (16) gives the strain tensor in terms of the
particle displacements,

_ 1 /0u, N ou, N Oug Oug 24
Tw=o\ax T ax Yok, ) (24)

Using Egs. (21) to (24) in Eq. (20), and retaining first-order terms in du,/dx,,
gives

. d ou,
Potl, = Crvas ax, ) (25)

We assume a plane wave solution to Eq. (25) of the form
u, = é, -ncostk,x, — wt), (26)
where

¢, = unit displacement vector in the uth direction,
u = (u,) = particle displacement vector,

k = (k,) = wave propagation vector, and

o = angular frequency.

Substituting Eq. (26) into Eq. (25), we obtain the eigenvalue-eigenvector
equation

ICuvaﬂKvKﬂ - Povzéual = Oa (27)

(x,) = the set of direction cosines of x,
= w/|k| is the phase speed, and
= k/|k| indicates the direction of wave propagation in the medium.

For any given wave propagation direction, there are three eigenvalue
solutions to Eq. (27); these correspond to one quasilongitudinal and two
quasitransverse polarization modes. Relationships have also been derived for
wave propagation in the presence of residual stresses and for retention of the
higher-order elastic coefficients (Cantrell, 1982; Breazeale and Ford, 1965).

Because both the stress and strain tensors are symmetric, one can reduce
the number of independent second-order elastic coefficients to 21 (Landau
and Lifshitz, 1986, p. 32). It is also convenient to use the Voight (1928)
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1. ELASTIC CONSTANTS AND THEIR ALLOYS 9

contraction of the indices as in Eq. (6), which is used in the remainder of this
section. The number of independent elastic coefficients varies with crystal
structure' and is listed in the accompanying table.

Number of Independent

Crystal Class Elastic Coefficients
Trichnic 21
Monoclinic 13
Orthorhombic 9
Tetragonal (C,, S,. Can) 7
Tetragonal (C,,. D,4. Dy, Dyy) 6
Rhombohedral (C,, S¢) 7
Rhombohedral (C,,, Dj, Di4) 6
Hexagonal 5
Cubic 3
(Isotropic) 2

Green (1973) and others have solved Eq. (27) for isotropic materials and
for cubic crystals in the [100], [110], and [111] directions. Using the
symmetry properties of the crystals, one obtains the results presented in
Section 1.3.b for cubic crystals, and in Section I.3.c for isotropic solids.

b. Cubic Crystals
For plane waves propagating along the [100] direction:
(k; =1,k, =0,k =0);

longitudinal (compressional) waves (pure mode with particle displacements
u, in direction of propagation, u, and u; = 0) have a phase speed

n= [—; (28)

and transverse (shear) waves (pure mode with particle displacements u, = 0,
u, and u, perpendicular to the direction of propagation) have values given by

Uz = Ua = ‘p_. (29)
0

'"We assume that the angles defining the orientation of axes in the crystal are not specified. For
a further discussion, see Landau and Lilshitz (1986).

164




10 A.-B. CHEN, ARDEN SHER AND W.T. YOST

For plane waves propagating along the [110] direction:

(%, = l/\/i Ky = l/ﬁ: Ky =0);

for longitudinal (compressional) waves (pure mode with particle displace-
ments u, = u,, u3 = 0), one obtains

Ci, +C13+2C,

v, = \/ 24 ; (30)
and for transverse (shear) waves (pure mode with u, = —u,, u3 = 0), one
obtains

Cn - sz
v, \/ 20 31D

or for transverse (shear) waves (pure mode with u; = u, =0, u3 # 0), one
obtains

Cus

. 32
2, (32)

Uy =

For plane waves propagating along the [111] direction:

(k, = 1//3, %, = 1/3, x5 = 1//3); (33)

the speed for longitudinal (compressional) waves (pure mode withu, = u, =
u,) is given by

Cll + 2C12 + 4C44
= ; 34
. \/ 3po ’ (34

and that for transverse (shear) waves (pure mode with u;k; + uyk; + Usxy =
0 or particle displacement perpendicular to wave propagation) is given by

0y = vy = \/C“ e (35)

c¢. Isotropic Solids

For the case of isotropy, all directions are equivalent, we are left with two
independent constants (Lamé constants). The elastic coefficients can be
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1. ELASTIC CONSTANTS AND THEIR ALLOYS 11
expressed in terms of the Lame’ constants (Green, 1973) as follows:

C,,=Cy=Cy3 =4+ 2,
Ci2=Ci3=Cr3=14,
Cy1=C3,=C3y =4,
Cis=Css=Ceo6 = 1.

(36)

For plane waves propagating in any direction (e.g., the x-direction):
(Kl = 1, K, =0, K3 =0)

the speed for longitudinal (compressional) wave (pure mode with particle
displacements u, in direction of propagation, u, and u, = 0) is given by

)
u,=\/’+ K (7
Po

and that for transverse (shear) waves (pure mode with particle displacements
u, = 0, and u, and u, perpendicular to the direction of propagation) is given
by

i

—. 38
Po (38)

vz=v3=

II. Measurement Methods

4. VELOCITY MEASUREMENTS

To measure the second-order elastic coefficients (SOEC), one can deter-
mine the sound velocity and the density of the sample, and calculate the
combination of SOEC that the direction of propagation requires. For cubic
systems, sound velocities measured in the pure mode directions equivalent to
[100], [110], and [111] make it possible to determine the three independent
elastic constants, C,,, C,,, and C.,. Using care in sample preparation, and
appropriate corrections for bond thickness and diffraction, the sound veloci-
ties can be determined to parts in 10°. The accuracy of a velocity determina-
tion is usually limited by the accuracy of the path length measurement in
pulsed and continuous wave techniques. With optical techniques, defiection
angles, wavelength measurements, and frequencies are determinant factors.

In general, there is little problem in obtaining a sound velocity measure-
ment on the order of 19 uncertainty. But to improve on this, one must
exercise additional care in the preparation of surfaces, the control of
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12 A.-B. CHEN. ARDEN SHER AND W.T. YOST

temperature, the determination of acoustic path length, and the determina-
tion of travel time of the acoustic wave.? For single transducer configura-
tions, where a transducer is used to send and receive the acoustic wave, the
base equation for determining the velocity using pulsed techniques or pulse
echo without corrections is as follows:

V= (39)

where v is the wave velocity, L i1s the sample length, and T is the round-
trip time. Corrections® are made in the evaluation of T and vary with
the technique used in the measurement. Corrections for bond thickness
(McSkimin, 1961), and for diffraction effects (Papadakis, 1967) can be
measured and/or calculated. Accuracies of some of the more frequently used
pulsed techniques are given in Table I. A comparis.n of the accuracies of
various techniques are discussed by Papadakis (1972, 1976). Using contin-
uous wave techniques, the propagating plane wave model (Bolef and Miller,
1971), the basic equation without corrections is

v=2LAf, (40)

where Af is the frequency difference between two adjacent mechanical
resonance modes. Typically, velocity measurement accuracy is good to about
19; to 10%. A correction factor (Chern et al., 1981) can be applied to the right
side of Eq. (39) that corrects for the effects of the transducer and bond on the
mechanical resonances of the sample. When applied, the inaccuracy can be as
low as five parts per 100,000, neglecting inaccuracies in path length measure-
ments.

If the sample is transparent, optical techniques offer a convenient method
to measure sound velocity. For some of these techniques, the accuracy is on
order of parts per thousand. Still, some offer accuracies of parts per ten
thousand and can be used with small samples, and very high-frequency
ultrasonic waves (Breazeale et al, 1981). In general, the calculation for

2The accuracy depends upon the correct choice for the resonant frequency of the transducer,
which can be obtained from the fact that it is half a wavelength in thickness. Using a micrometer,
and the wave velocity of the transducer material, one can calculate the resonant frequency of the
transducer. Transducer off-resonant conditions can have a relatively large influence on the
measurement of round-trip time for pulsed studies.

3Other influences on the measurement of round-trip time are bond thickness and diffraction.
These are discussed in various papers, including McSkimin (1961) and Papadakis (1967, 1972).
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1. ELASTIC CONSTANTS AND THEIR ALLOYS 15

velocity involved the determination of acoustic wavelength in the medium, by
using the equation

v=fA, (41)

where f is the frequency of the sound wave, determined by the drive frequency
of the transducer, and 4 is the wavelength. Brillouin scattering also makes it
possible to measure the sound velocity (Beyer and Letcher, 1969). In addition
to measurement of an angle, the accuracy also depends on determination of
the wavelength of light in the medium; this requires a determination of the
index of refraction of the medium.

S. ULTRASONIC MEASUREMENT TECHNIQUES

Surveys of techniques and details for measuring ultrasonic velocities are
available from various sources (Breazeale et al., 1981; Papadakis, 1976;
Truell et al., 1969). Consideration in this work will be given to three classes of
techniques for absolute velocity measurements. A compilation of some of the
features of each technique is given in Table L.

a. Sample Preparation

The tolerance selected for preparing the sample depends largely upon the
accuracy needed in the determination. If a 19 measurement is in order,
surface preparation and parallelism are less critical than if an accuracy of
0.01 9, 1s desired. Also important is the consideration of correction factors
needed to compensate for bond thickness and diffraction effects. At present,
diffraction corrections exist only for compressional waves. Therefore, under
equivalent experimental conditions, the most accurate determination of
combinations of elastic coefficients would be those that are calculated from
compressional wave velocities.

It is assumed that a surface on the sample has been ground to optical
tolerances, and that the crystallographic direction of the axis of this surface
has been determined. Typically, the crystallographic directions are measured
to within minutes of arc (McSkimin and Andreatch, 1964). The remaining
critical issues are the parallelism of the reflecting surface to the reference
surface, and the flatness of these surfaces. Parallelism of the surfaces can be
measured, for example, with an autocolliminator or a He-Ne gas laser and
some mirrors. By placing the sample’s reference surface on a stationary flat,
dust-free surface, rotating the sample, and measuring the diameter of the
circle traced by the beam reflected from the sample’s top surface, and
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16 A.-B. CHEN, ARDEN SHER AND W.T YOST

measuring the total path length of the beam from the sample to the image
screen, one can determine the parallelism of the surfaces. The surfaces should
be parallel to an angle better than 0.01 4,_,,..../transducer diameter. For a
typical half-inch diameter, 10 MHz transducer and a typical solid, the
surfaces must be parallel to better than 4 x 10~* radians (1 degree, 23 min-
utes). Higher frequencies, multiple reflections, and continuous-wave tech-
niques require proportionally smaller tolerances.

Typically, one also tries for a flatness of better than 1/100 of an acoustic
wavelength for accurate determination of transit times. If the resonant
frequency of the transducer is 10 MHz, then the wavelength in a solid is in the
neighborhood of 5 x 10™* meters, which puts the flatness requirement near
5 micrometers. Using an optical flat and Newton’s rings analysis, one can
determine the flatness of the sample. For higher-frequency transducers and
continuous-wave techniques, the number of fringes are appropriately de-
creased. At 100 MHz, pulsed mode, for example, the tolerance is down to less
than several fringes. By using flat lapping surfaces, this is easily achieved.
When multiple reflections are involved in the measurement, one must
consider that for each reflection, changes occur in the wavefront direction;
the phase change across the surface of the transducer at each reflection is due
to lack of parallelism between the faces. For a case where a 20 MHz
transducer was used, and multiple reflections employed for the measurement,
Papadakis (1967) quotes a sample surface parallelism and flatness of better
than 10~ inches per inch.

b. Piezoelectric Transducers

Selection of the piezoelectric transducer depends largely upon the wave
mode, the electronic equipment to be used for the measurement, and the
personal preference of the researcher. In general, piezoelectric crystals* such
as quartz (high electric impedance) and lithium niobate, or poled ceramics
such as PZT (lead zirconate titanate), are chosen. Their physical and
electrical properties are covered elsewhere (O’Donnell et al., 1981). Other
piezoelectric transducers, including polymeric materials,® are also available.
The transducer diameter should be smaller than the sample to assure that
propagation modes are not affected by the location of lateral boundaries (Tu

“Information on piezoelectric transducers is available from Valpey-Fisher Corp., 75 South
Street, Hopkinton, Massachusetts 01748, and Crystal Technology Inc., 1060 E. Meadow Circle,
Palo Alto, California 94303.

3A film sold under the tradename KYNAR is an example of this. Information on this material
can be obtained from Pennwalt Corp., Box C, King of Prussia, Pennsylvania 19406-0018. Some
of the properties are covered in Bloomfield et al. (1978). Lead attachment to KYNAR films is
covered in Scott and Bloomfield (1981).
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1. ELASTIC CONSTANTS AND THEIR ALLOYS 17

et al., 1955). This is especially important where measurements are taken on
small samples that may have their lateral sides close to each other. One also
must consider the problem as it relates to wave propagation, since wave
modes other than those considered here can be excited in materials of small
dimensions. From studies on cylindrical specimens, the minimum sample
diameter can be no less than approximately 2.54, where 4 is the wavelength of
the ultrasound in the medium. The transducer diameter is chosen after the
frequency is selected. Generally, the transducer diameter should be no longer
than half the diameter of the sample, to prevent any interference in the
measurement from reflections off the lateral boundaries caused by diffraction
effects.

Selection of a bonding material depends upon the type of wave (compres-
sional or shear), and the temperature range through which the measurements
are to be taken. At room temperature, a good choice for both types of waves
in phenyl salicylate or phenyl benzoate (Papadakis, 1964), while Dow-
Corning DC-200 silicone is good for longitudinal waves. At other tempera-
tures (McSkimin, 1957), other bonding maternials, such as Nonaq stopcock
grease, are used for compressional and shear waves. Various resins can be
used with shear wave transducers; commercially prepared bonding matenals
are also available.®

Application of the bond requires care to keep surfaces clean and free of
dust. The bond should be as thin as practical, taking care not to break the
transducer. Often, applying some heat helps with viscious bonding matenials.
When using phenyl salicylate or phenyl benzoate for bonds, certain proce-
dures can be followed to assure uniform bonds (Papadakis, 1964a).

¢. Noncontacting Transducers

There are three types of non-contacting excitation transducers: capacitive
transducers (compressional wave excitation only) (Cantrell and Breazeale,
1977), electromagnetic transducers (EMAT) (Vasile and Thompson, 1977;
Johnson and Mase, 1984), and optically stimulated acoustic transducers
(Prosser and Green, 1985). With the exception of the electrostatic transducer
(compressional with circular piston geometry), diffraction correction data
have not been developed. However, bond corrections are not necessary as
these methods generate the wave directly on the sample surface. Generally,
the signal levels are quite small, and require high gain and specialized circuits
or devices to bring the signals to usable levels.

¢For example, suppliers of damped ultrasonic transducers can supply material suitable for
high temperature and shear measurements. Two companies are Panametrics, Inc., 221 Crescent
St.. Waltham, Massachusetts 02254, and Harisonics, Inc., 7 Hyde St., Stamford, Connecticut
06907.
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6. CORRECTIONS TO PULSE MEASUREMENTS: AN EXAMPLE

With some puised systems, and with care in preparing the sample and in
taking the measurements, one can expect round-trip time determinations to
have standard deviations in the neighborhood of 100 picoseconds. As correc-
tions for bond thickness and diffraction are often larger than this, 1t is
necessary to correct for these sources of systemic error where possible. As an
example, consider, for a properly prepared sample, that the pulse-echo
overlap technique is to be used to measure the round-trip time for a tone
burst. The time between the first-received and the second-received echos will
be determined. For simplicity, we will treat the case of only one round trip in
the sample. The measured time T is composed of several terms: the true travel
time &, the bond thickness contribution A, and the diffraction contribution
AP

a. Bond Thickness

The model for the sample-bonded transducer system has been developed
by Williams and Lamb (1958) and has been used extensively by McSkimin
(1961) and by Papadakis (1967). They showed that if the transducer bond
sample system is treated as an acoustic transmission line, it is possible to
calculate the effects of bond thickness on the measurement of transit time.
McSkimin (1961) showed that by measuring the change in the transit time
when the system is detuned by a known amount, it is possible to determine
the bond thickness in terms of measured quantities. This permits one to
correct for the transit time through the bond matenial. Papadakis (1967)
discussed the correction in some detail, and applied it to his measurements on
fused quartz and silicon.

Consider an undamped transducer bonded to one end of a sample with
some bonding material of known velocity and density; a relatively long wave
is reflected from the interface between the sample and the transducer bond
system. The reflected wave from this interface experiences a phase shift from
the impedance mismatch, which can be calculated from the model. The
calculation uses the real and imaginary parts of the effective impedance of the
components to obtain the contribution to the phase shift. By detuning the
frequency of the applied tone burst, we can measure a corresponding change
in transit time. Then, a comparison with the measured values permits the
calculation of the bond thickness, so that its effect on the measurement can be
determined. The approach is outlined below.
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1. ELASTIC CONSTANTS AND THEIR ALLOYS 19

The reflection coefficient for the system described above is given by

E, 2Z,-2,
E. Z,+2; (42)
where E, is the reflected pressure wave, E; is the incident pressure wave, Z, is
the specific acoustic impedance (Elmore and Heald, 1969) of the sample
(Z, = pc, where p is the mass density, and ¢ is the wave propagation speed),
and Z, is the effective specific acoustic impedance of the transducer bond
system, given by McSkimin (1961),

(g—l)tan k,A, + tan k,A,

2

Zd =.]Zl Z s (43)
(21> —tan k,A, tank A,

2

where Z, and Z, are the specific acoustic impedances of the bond material
and transducer material, respectively. Using similar conventions, k, and k,
are propagation constants in the respective materials, as A, and A, are the

respective bond and transducer thicknesses, and jis / — 1.
The phase angle (McSkimin, 1961) is calculated by writing Eq. (42) in
complex polar form and gives

222 ) @

y = arctan| ————
(IZ‘:I2 -2

where |Z,| is the modulus of Z,, and (n + y) is the phase shift between the
reflected and incident pressure waves impinging on the interface of the
transducer bond system with the sample.

When the system is driven at the transducer resonant frequency, f, can be
calculated by using the fact that the transducer at fundamental resonance has
a thickness of one-half of a wavelength; then |Z,| becomes Z, tan k,A,,
which is generally quite small for a thin bond. Frequencies of off-transducer
resonance, generally chosen as 0.9f,, give a larger phase angle, since the
dependence of Z, upon off-resonance frequency excitation is large. As
outlined in McSkimin (1961) and Papadakis (1967), we can calculate the time
difference between phase-matched echo trains, AT, caused by the change of

drive frequency, and compare it with experimental results to determine the
correct condition for overlap.
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Assume an alignment of, for example, the first and second echoes in the
sample. The change in the measured time between echos is given by

LY AN Y R 1 '
e

where p is the number of round trips (for our case, p = 1) of the ultrasonic
tone burst in the sample, n is the number of cycles of mismatch in the tone
burst, f; is the off-transducer resonance drive frequency, f; is the drive
frequency at transducer resonance, 7, is the phase angle at the off-resonance
frequency (radians), and 7, is the phase angle (radians) at the transducer
resonance. One can calculate AT for the case of no cycle mismatch (n = 0)
and no bond thickness (yg = 0) from Egs. (43) through (45). The measured
value closest to the calculated value determines the correct experimental cycle
for cycle match. Following the experimental identification of the correct
match, the measured AT can be used to determine the correction for bond
thickness by adjusting A, in Eq. (43) and solving Eq. (44) to bring Eq. (45)
Iinto agreement with the measvred AT values. The phase angle at resonance
can be determined, and the travel time correction for bond thickness, A®, is
given by

7R
A® =R 4
I h (46)
where 7 and f; are the phase angle, and drive frequency respectively, both
taken at transducer resonance.

b. Diffraction Corrections

Diffraction effects for compressional waves in various crystalline symme-
tries have been treated by several investigators (Seki et al., 1956; Papadakis,
1963, 1964b, 1566; Williams, 1970), while others have treated isotropic media
(Benson and Kiyohara, 1974; Khimunin, 1972; Rogers and Van Buren,
1974). Papadakis (1972) has shown that without diffraction corrections, one
can expect errors in travel times as large as 0.25/fz. He also discussed (1972)
diffraction corrections for the technique of pulse-echo overlap technique.
Using the dimensionless quantity
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where S is the Seki parameter, a is the transducer radius, 4 i1s the wavelength
in the sample, and z i1s the distance of propagation, he wrote the phase
corre_tion due to diffraction, AP, as

_ [$(5,) = $(Sm)]

D
4 2nf

(48)

where ¢ is the phase shift in radians of the received wave front that is due to
diffraction effects. For the example, the sample is of length L, which gives
S,=2L//a* and S, = 4Li/a’.

The true travel time, 6, can be written in terms of the measured time, T, and
the corrections:

=T+ A® + AP, (49)

The thickness of the sample, L, is measured by conventional means, such as a
high-precision micrometer, and the velocity of sound is given by

2L

v=—. (50)

7. OpTICAL TECHNIQUES

Optical techniques have been used with success in the measurement of
sound velocities in transparent media. The methods include diffraction and
scattering of light by sound waves. A direct method of optically measuring an
acoustic wavelength in the material can also be used.

The diffraction techniques considered here permit the determination of the
wavelength of sound. The wavelength, A*, is combined with the ultrasonic
frequency, f, of the sound beam to calculate its velocity, according to the
expression

* =y, (51)

where v is the speed of sound in the sample. In any optical technique,
however, one must specify the type of diffraction experienced by the light.

a. Fraunhofer Diffraction of Light by Sound

Consider an ultrasonic transducer, bonded to a transparent solid, generat-
ing ultrasonic compressional waves that propagate into the solid. Further
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suppose that the sound wave encounters light traversing the same medium so
that the light i1s diffracted. There are two different physical regimes that can
produce the diffraction effects. One involves the formation of a corrugation in
the phase fronts of the light that is due to the spatial vanation in the index of
refraction of the solid, as caused by the sound waves. This is called
Raman-Nath diffraction (Raman and Nath, 1935a, 1935b, 1936a, 1936b,
1936¢: Born and Wolf, 1970). The second regime involves the reflection of
light from the evenly spaced crests of the sound waves. These reflections occur
under some conditions that are similar to x-ray diffraction by a crystal lattice;
this is called Bragg diffraction (Bhatia and Noble, 1953). Both types of
diffraction can be used to determine the sound velocity of the matenal.

In order to determine ‘~hich type of diffraction effect predominates
(Nomoto, 1942), a dimensionlcs: parameter (Klein et al., 1965), Q, is defined
as

K*:L

Q ;
poK

(52)

where K* is the ultrasonic propagation constant, L is the width of the
ultrasonic beam, u, is the index of refraction, and K is the propagation
constant of light in vacuum. If Q > 9, one has Bragg ciffraction. If @ < |,
Raman-Nath diffraction occurs. For 1 < @ < 9, the diffra-tion is mixed. For
illustrative purposes, consider a typical transparent solid C,gung = 5 x 10°
m/s, index of refraction =~ 1.5, and ultrasonic beam width = 1.27 x 10”2 m),
illuminated with light at wavelength 632.8 nm. If the ultrasonic frequency 1s
approximately 27 MHz or less, the interaction satisfied Raman-Nath diffrac-
tion conditions. If the frequency is greater than approximately 81 MHz, the
interaction is governed by Bragg diffraction conditions.

b. Raman—Nath Diffraction

For the case of Raman-Nath diffraction, we consider the light
beam impinging on the medium at an angle ¢, with the light normal to the
sound beam. The location of the diffraction orders are given by the
expression (Breazeale et al., 1981)

A
sin(6, + ¢) — sin(®) = =%, (53)
where ¢ is the angle of incidence, 8 is the angle of diffraction, 4 is the

wavelength of light in the medium, 2* is the ultrasonic wavelength, and n1s an

177




1. ELASTIC CONSTANTS AND THEIR ALLOYS 23

integer. One can experimentally set ¢ = 0, which reduces Eq. (53) to
. n’
sin(8,) = R (54)

The ultrasonic wavelength can be determined from Egq.(53). With the
measurement of the ultrasonic frequency, one can determine the sound
velocity of the compressional wave (Barnes and Hiedemann, 1957). In
determining the wavelength measurement and its uncertainty, it is necessary
to make an analysis of the optical setup, including the effects of Snell’s Law at
interfaces.

¢. Bragg Diffraction

For the case of Bragg diffraction, the angle of incidence, ¢, is set to the
angle of diffraction, and

ni = 22* sin ¢y, (55)

where ¢y is the Bragg angle. Bragg diffraction is used to measure wave
velocities in the frequency range from approximately 100 MHz to the low end
of the gigahertz scale. For example (Krischer, 1968), the technique has been
used to measure wave velocity to an estimated accuracy of better than 0.1%,.
It is also useful in measuring the local velocities within a sample (Simondet
et al., 1976; Michard and Perrin, 1978). Measurements with precision of
better than 0.019 in homogenous samples have been reported {Simondet
et al., 1976).

d. Direct Measurements ( Fresnel Diffraction)

Consider a standing ultrasonic wave in a sample through which collimated
light is passed so that the collimated light beam is perpendicular to the sound
beam. A measuring microscope or similar optical device is focused so that the
image of the wave can be viewed at the instrument focal plane. Because the
images of the wave fronts are 4/2 apart, it is possible to determine the
ultrasonic velocity from measurements of ultrasonic frequency and measure-
ments of the wavelength in the medium. The technique is sensitive enough to
detect local variations in velocity greater than 0.01% (Hiedemann and
Hoesch, 1934, 1937; Mayer and Hiedemann, 1958, 1959).

e. Brillouin Scattering

Consider the scattering of a photon by a high-frequency phonon traveling
in a specific direction within a crystal. Application of conservation of energy
and momentum to the scattering, coupled with the approximation that any
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photon frequency shift is small (Benedek and Fntsch, 1966; chcr'and
Letcher, 1969, pp. 47-50), gives

. v\ . /6
vt = i2v<z>sm<:—z), (56)

where v is the photon frequency, v* is the phonon frequency as well as the
difference in frequency of the scattered photons, C is the speed of the photon
in the medium, v is the speed of the phonon, and @ is the scattering angle. If
desirable, the Bragg condition can be used for constructive reinforcement by
adjusting 6 (Pollard, 1977). The technique gives three lines in the scattered
photon spectra, which can be separated and measured with appropnate
optical devices, such as Fabry-Perot interferometers, to obtain v*. Equa-
tion (56) can be solved for v in terms of the other quantities. Brillouin
scattering is useful in the investigation of the sound velocity of a material near
a phase transition (Fleury, 1970, pp. 37-42). The technique has been used for
both longitudinal and mixed modes. However, in one study on cubic crystals,
no Brillouin scattering was observed from an acoustic branch that consisted
of pure transverse waves (Benedek and Fritsch, 1966). Uncertainties in the
index of refraction, the scattering angle, and the width of the Stokes and anti-
Stokes lines influence the accuracy of the determination. The precision 1s
considerably better, however, with values of 0.19, as mentioned.

In stimulated Brillouin scattering, the photon scattering process is depen-
dent upon the intensity of the radiation striking the surface. With high
enough light intensity, nonlinear effects occur, which result in scattering by
frequencies and harmonics created by harmonic generation (Brewer, 1965). A
large buildup of acoustic intensity, both compressional and shear waves,
accompanies a threshold in optical intensity (Chiao et al., 1964). Other effects
include the possibility of sample destruction {rom the intense radiation, and
the line pulling effects of the laser cavity on the scattered light, which affects
accuracy (Fleury, 1970, pp. 57-58). Amplified acoustic frequencies have been
reported as high as 60 GHz.

III. Theoretical and Experimental Results
8. AB INITI0O THEORY
It is clear from Section 2 that the calculation of elastic constants requires
an accurate computation of the variation in the total energy of a solid, from

equilibrium to distorted configurations. Thanks to the availability of power-
ful computers, great advances in ab initio total-energy calculation have been
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made in recent years (Anderson et al., 1985). In this section we briefly discuss
the approximations used in ab initio theory and summarize the calculated
results.

The Hamiltonian of a solid consists of five parts: the two kinetic energies of
the ions and electrons, K, and K, respectively, and the potential energies U,
among ions, U,, among electrons, andU, between electrons and ions. The
Born-Oppenheimer (1927) adiabatic approximation is a simple way to
separate the electronic from the ionic variables. In this approximation,
because the ion speed 1s at least two orders smaller than the electron speed,
one freezes the ionic motion in a configuration specified by a set of ion
position vectors R, then solves the Schrodinger equation for that part of the
Hamiltonian that involves the set of electronic coordinates {F}:

Hy ({73 (R = EXARDWL(F, {RW)), (57)

where H = K_ + U, + U,. Thus the energy E, is a function of the ionic
configuration, The lowest energy curve of the sum of E,=E + U, as a
function of {R,} then serves as the potential energy for the ionic motion. A
Taylor expansion of E; about its minimum value E,, takes the form

Eg{ﬁn} = Eo + % znmaﬂq):glunaumﬁ + -y, (58)

where u,, is the a-component of the small displacement R, — R,(0) with
{R,(0)} the equilibrium ionic positions at the minimum energy E,. The force
functions ®%, are the second derivatives of E, with respect to the displace-
ments evaluated at the ion equilibrium positions. The force functions are
directly related to the elastic constants. For example, for a Bravais lattice they
are given by Aschcroft and Mermin (1976) as

Capur = — 3T LOMD)L,, (59)

where the sum is over all the lattice vectors L.

Equation (57) is computationally the most difficult part of the problem,
because it deals with about 10?2 electrons that are interacting with each other
and with the ions; the wave functions have to be the properly antisym-
metrized many-body functions. Self-consistent density-functional theory
(SCDFT) (Hohenberg and Kohn, 1964; Kohn and Sham, 1965; Callaway
and March, 1984), which casts the Hamiltonian into a density functional,
reduces the many-body problem to an effective one-electron problem. This
theory has been tested in many crystalline solids, and the resulting elastic
constants have been excellent, especially for semiconductors.
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In SCDFT, the ground-state energy of a solid is completely specified by
single-particle wave functions of the occupied states {¢,}. First, the electron
density is given by
p(F) = Z, oM. (60)
Then, the ground state energy is computed as follows:

E. =K +U,+Uy+Uy+U,, (61)

where the different terms are given by the expressions

k.=, |6t L o0 o, (62)
2m
2 o s
V=2 H PO oy iy (63)
2 [F — F|
.o 2 p(F) 5
Lel— eZ"Z"J‘F—:—R:Td r, (64)
e? - -
Ull = ?Z;nnzmzn/'Rm - Rnl ’ (65)
Use = | i Lo®e’r (66)

Note that n = m is excluded in the sum in Eq. (65). The meaning and the
notations of the above equations are mostly self-evident, except the ¢, [p] in
Eq. (66); this is the correction term arising from the many-body exchange and
correlation effects. The square bracket means that ¢, is a functional of p.
Several different expressions for ¢, as a function of p, available in the
literature (for example, Wigner, 1934; Hedin and Lunquist, 1971; Ceperley
and Alder, 1980; Perdew and Zunger, 1981), have yielded similar results for
the structural properties of semiconductors. A minimization of E;, with
respect to ¢¥ with the constraint that the total number of electrons is a
constant, leads to the familiar Schroedinger single-particle equation:

2
[;’—m + V(r')]m(r‘) = e, (67)
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where ¢, is a Lagrange multiplier and V is an effective one-electron potential
containing three parts:

V=V, +V,+V,, (68)
p(F) &y
flr—rl . (69)

V., is the Coulomb potential due to ionic charges Z,:
V.= —e*%,Z/|F - R,l. (70)

Finally, the exchange-correlation potential V,, is given by

(71)

Thus, Eqgs. (60) and (67)-(71) form a repeated loop, p = V — ¢ — p, and
the calculation must be iterated until self-consistency is achieved. Following
this recipe for calculating the total energy, one calculates E_ as a function of
ionic positions, finds the equilibrium configuration, then imposes a strain and
calculates the strain energy to deduce the elastic constants, following the
prescription of Section 2. The problem then becomes strictly computational.
The most challenging task is an accurate solution for the single-particle eiger
states of Eq.(67). For a crystalline solid, lattice translational symmetry
simplifies the problem, and band-structure techniques can be applied to
obtain the solution. Because the strain energy is many orders of magnitude
smaller than the total energy, very precise computation is required if one
hopes to obtain meaningful elastic constants. So far, at least two band-
structure methods have been demonstrated as reliable for all three elastic
constants: the plane-wave method using pseudopotentials (PP-PW) (Nielsen
and Martin, 1983, 1985a), and the full-potential linearized-muffin-tin-orbital
method (FP-LMTO) (Methfessel et al., 1989). Although the full-potential
argumented plane-wave method (FP-APW) (Krahauer et al., 1979; Wimmer
etal., 1981; Wei and Krahauer, 1985; Ferreira et al.1989) has produced
excellent lattice constants, structural energies, and bulk moduli, the complete
semiconductor elastic constants based on this method are not yet available.

Even if the total energies at different distortions can be calculated
accurately, there is still the problem of searching for the equilibrium atomic
positions in a distorted crystal, and the numerical determination of elastic
constants from energy differences. If the strain energy can be calculated
directly without taking the difference between two large energies, or if the
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derivatives can be calculated directly, not only can the computation time be
shortened, but the numerical errors will also be reduced. The quantum
mechanical theory of forces and stresses of Nielsen and Martin (1985b) and
the closely related direct calculation of elastic constants from linear response
theory of Baroni et al. (1987) represent the status of efforts in this direction.
The former has been carried out for all three elastic constants for Si, Ge and
GaAs (Nielsen and Martin, 1985a), while the latter has been done only on the
bulk modulus for Si; both are based on the PW-PP method. Table Il shows a

TABLE I

COMPARISON BETWEEN CALCULATED AND EXPERIMENTAL CONSTANTS®

Expt® FP-LMTO* PP-PW¢ B
SI
a 5.431 5.41 545 5431
B 9.923 99 93 9923
C,,—-C,, 10.274 10.2 9.8 10.274
Cas 8.036 83 8.5 8.013
c2 11.1 11.30
G 0.54¢ 0.51 0.53 0.51
w 523 518 521 572
Ge
a 5.65 5.59 5.65
B 7.653 7.2 7.653
C,~-C,, 8.189 8.5 8.189
Ces 6.816 6.3 6.84
co 7.7 9.46
4 0.44 0.49
w 303 302 342
GaAs

a 5.642 5.55 5.642
B 7.69 7.3 7.69
C,,—-Cy; 6.63 7.0 6.63
Caa 6.04 6.2 579
co 7.5 7.83
L 0.48 0.50
w 273 268 292

“Comparison between calculated and experimental lattice constant a, elastic constants B,
C,, — C,; and C,,, Kleiman (1962) internal distortion parameter {, and the TO optical
phonon w in wave numbers 1/cm. Also listed are C'2) defined in Eq. (13). The FP-LMTO and
PP-PW are the ab initio theories described in Part 1, and TB is the tight-bonding theory in
Part III, Section 10. All elastic constants are in units of 10'! dynes/cm?.

PAll the experimental lattice constants are those tabulated by Zallen (1982). The experimen-
tal elastic constants are taken from Table II1, and the phonon frequencies are from Table V.

‘Methfessel et al. (1989).

“Nielsen and Martin (1985a).

‘Cousins et al. (1987).
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comparison between theoretical calculations and experimental results. From
this comparison, it is fair to say that we have a very reliable ab initio theory
for the elastic constants for crystalline semiconductors based on the self-
consistent local density-functional theory. Note that Table II also lists the
results from an empirical tight-binding (TB) theory to be discussed in
Section 10.

9. VALENCE Force FiELD MODEL

The preceding section showed that ab initio theory for the elastic constants
requires complicated computations. Accurate ab initio calculations for semi-
conductors have been obtained only recently and only for several systems.
On the other hand, phencmenological microscopic models of elastic con-
stants for all semiconductors have been available for some time. Of these, the
valence force-field model (VFF) is perhaps the simplest and the most useful.
This topic has been reviewed and well analyzed in a paper by Martin (1970),
and its conclusions constitute the main body of this section.

a. Diamond Structure

The original VFF model by Musgrave and Pople (1962) was for the
diamond structure, in which the elastic energy is a quadratic form, in terms of
the changes in each bond length Ar, in bond angles Af;;, and in the products
ArAr; and A6, between nearest-neighbor bonds. For elastic constants,
Keating (1966) showed that the VFF can be simplified by the following
approximation to the elastic energy of the crystal:

3 3
AE = g%z [AG; - 7)1* + 8% > [AG: - 7)), (72)

i>j

where the bond index i runs over all the bonds, but the i and j sum only over
those pairs of bonds that are connected to a common atom. In Eq. (72), d is
the equilibrium bond length and A(F; - 7)) is the change in the dot product of
the two bond vectors that start at the common atom, point along the bord
directions, and end at the first neighbor atoms. Following the calculational
procedure described in Section 2 for uniform expansion, the U in the VFF
under a uniform expansion can be shown to be U = 2(3a + B)e?d*/Q, where
Q = a’/4 is the equilibrium volume per unit cell. Thus,

B=(C,, +2C;)3=(a+ B/3)/a. (73)
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For the shear strain described by Eq. (9), Eq. (72) yields U = 4B¢?/a. Thus,
according to Eq. (10),

Cy,—Cyy;=4p/a. (74)

For the shear strain described by Eq. (11) and with an internal displacement
u = (0,0, u), Eq. (72) yields the following expression:

U = [a(e — m)* + Ble + n)*)/(8a), (75)

where u = na/4. A comparison between Egs.(13) and (75) shows that
¢ = 16(a + B)/a®, D = —4(x — B)/a?, and C = (a + B)/a. Using these re-
sults in Eq. (14), we find that the Kleiman internal displacement parameter in
the present model is given by

{=(ax~ P)(a+ B)=2C,,/(Cyy + Cy3). (76)

Equation (15) then produces

Cas = 2ap/[(x + Bla]. 7

The three elastic constants given above are not independent and can be
shown to related to each other by the Keating identity (1966), or

Iy = 2C44(Cyy + C1)/[(Cyy — C1aXCyy +3C5)] = 1. (78)

b. Zincblende Structure and Coulomb Force

The Keating identity (1966) holds very well for systems with the diamond
structure but not so well for the zincblende compounds (see Table III). One
obvious difference between the two structures is the presence of Coulomb
interactions arising from charge shifts between the cation and aniorn sublat-
tices in zb semiconductors. Martin (1970) incorporated Blackman’s (1959)
treatment of the Coulomb forces in the Keating VFF in the following
manner. First, the Coulomb energy was treated as a screened Madelung
energy E,,. For example, in a uniformly expanded crystal with a bond length
r, the Coulomb energy was taken to be E,, = — NayZ*2e?/(¢cr), where N is the
total number of unit cells, ay, = 1.6381 is the Madelung constant, and Z*?/¢ is
the effective charge defined by the optic-mode splitting:

S = 2Z*/e = p(wi ~ wl)/(4ne?). (79)
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TABLE HI

EXPERIMENTAL VALUES FOR CUBIC SEMICONDUCTORS®

Cn Ci2 Cus s a B Iy Iy Iaom
ct 107.640 12.520 57740 0.0 129.100  84.573 1.00 1.00 1.02
Si® 16.772 6.498 8036 0.0 49.247 13.951 1.00 1.00 1.13
Ge® 13.112 4923 6816 00 39.438 11.583 1.08 1.08 1.05
AlSb® 8.769 4.341 4076 1.684 33.768 6.653 1.11 1.05 1.08
GaPp® 14.390 6.520 7.143 3815 46.965 10.448 1.12 1.05 1.08

GaAs® 12.110 5.480 6.040  2.827 40.895 9159 112 106 105
GaSb* 9.089 4.143 4440 1.569 33.123 7412 110 106 106

InP? 10.220 5.760 4600 3.766 41.095 6250 120 107 103
InAs® 8.329 4.526 3959  2.820 33.744 5531 122 1N 1.00
InSb* 6.918 3.788 3132 13N 29.909 4951 117 1.1t 1.05
ZnS¢ 9420 5.680 4360 6.788 37.026 4571 133 107 095
Zn§* 10.790 7.220 4120 6.788 45.126 434] 128 102 101
VARS 9.810 6.270 4483  6.788 39.947 4300 142 113 090
Zn§* 10.460 6.530 4.630 6.788 41.880 4828 133 108 095
ZnSe® 8.95 539 3984 4368 34.432 4716 128 109 098
ZnSef 8.59 5.06 4.06 4.368 34.519 4673 132 113 095
ZnSef 8.720 5.240 3920  4.368 35.469 4603 129 110 098
ZnTe* 7.130 4070 3120 2.566 29.976 4452 118 106 105
ZnTe¢ 7.220 4.090 3.080 2.566 30.204 4558 114 103 108
CdTe? 533 3.65 204 3.105 27.058 2455 134 107 098
CdTe* 6.150 4.300 1960 3.105 31.546 2731 116 094 113
HgTe® 597 4.154 2259 2381 30.300 2542 137 116 096
HgTe* 5.63 3.66 2.1t 2.381 26919 2542 137 115 095

“txperimental elastic constants for some cubic semiconductors and the parameters of Eq.
(81) taken from Martin (1970), with the force constants a and § obtained from Eqgs. (82) and
(83) and the identity relations Iy, I, and Igoy given by Egs. (78), (88), and (119), respec-
tively. The elastic constants are in units of 10!'! dynes/cm?, and the force constants are in
10° dynes/cm.

*Data quoted from “Landolt-Bornstein Numerical Data and Functional Relationships in
Science and Technology,” New Series, Vols. 17 and 22.

‘Listed in the review by Mitra and Massa (1982).

In Eq.(79), w, and w, are, respectively, the longitudinal and transverse
phonon frequencies in the long-wave-length limit. Then, to counterbalance
the Coulomb forces, a repulsive force term was added and assumed to
contribute to the bond-stretching energy in the form

AEg = —Y ayZ*%e? Ar/(ded?). (80)

With the above two contributions added, the total strain energy is AE; =
AE + AE,, + AEg,, where AE is the VFF contribution in Eq. (72) and AEy is
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the change in the Madelung energy. The energies AE; are expanded in a
power series, and only terms up to the second power in the strain are kept.
The AE,, contributions arising from fixed values of the charge shift § = Z*?/¢
on the atomic sites under different strains were worked out by Blackman
(1959). Using these results and defining

s = Se?/d* = e2Z*?/(d%), (81)

Martin (1970) obtained the following modified expressions for the elastic
constants:

C,, +2C,, = (3a + B)/a— 0.355s, (82)
C,, —2C,, =48/a + 0.053s, (83)
{ =[(a — B)/a — 0.2945]/C,,, (84)

Cas = (2 + B)/a — 0.1365 — C\,L?, (85)
where C,, 1s defined as |
Cy = (2 + B)/a— 0.266s. (86)
The above equations can be comb':..d to yield
{=Q2C,;, —CY(Cy, +Cy, —C), (87)
where C’ = 0.314s. Since the extra parameter s is fixed by the optic modes and
the bond length, the above results combine into a new identity, the Martin

identity (1970):

— 2C44(C11 + C12 — CI)
(Cll - Clz)(C“ + 3C12 - ZC,) + 0.831C'(C11 + sz - C’)

Iy (88)

Table III lists a set of experimental values of the elastic constants and the s
values for a number of diamond and zincblende semiconductors. These
values are used to compute the force constants « and § and the identity
expressions I, and I, given in Eqgs. (78) and (88), respectively. Several sets of
data are quoted for some of the systems to show the uncertainties in the
experiments for these systems. The table results clearly show that the
inclusion of the Coulomb energies improves the identity relation; the
deviations of I from unity are 159 or less. Also listed are the values for
another identity relation, Igoy from Eq.(119), based on a tight-binding
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model to be discussed in Section 10. Martin further studied trends as
functions of the bond lengths d and the ionicity scale f; of Phillips (1973) and
Van Vechten (1969). He found that « scales roughly as 1/4°, ie.,

ad®/e® = constant, (89)

where e is the electron charge. He also found the ratio between the
bond-angle and bond-stretching forces tend to decrease as f; increases and
scales roughly as

Blacc1— f,. (90)

He further observed that if S of Eq. (79) is set equal to f; and if the « and #
values are extrapolated, using Egs. (89) and (90), from those fitted to the
average values of the B and C,, — C,, for Si and Ge, then all the elastic
constants can be predicted from Egs. (82) through (86) to an accuracy of 10%,.

It is interesting to compare Eq. (82) using the results of Egs. (89) and (90),
with Cohen’s (1985) empirical formula for the bulk modulus

B = (1971 — 224)/d*", 91)

where B is in GPa, d in A, and 4 =0, 1, and 2, respectively, for the group
IV, I1I-V, and II-VI semiconductors. Both Martin and Cohen’s formulas give
B values to better than 109 for all materials tabulated in Table III. The B in
Eq. (91) scales as 1/d>3, while in VFF it scales as 1/d*.

10. TIGHT-BINDING THEORY

In the semi-empirical tight-binding (TB) approach, the total energy of a
semiconductor crystal is assumed to be the sum of the electron energies ¢ (k)
in the valence bands plus repulsive pair energies u;; between the nearest-
neighbor atoms (Chadi, 1978):

Er=Ep+U, =YYe®)+YY u;. (92)
v k

i> j

Furthermore, the band energies are interpolated by using a TB Hamilto-
nian that contains term values of the atoms, and a handful of interaction
parameters between orbitals of the neighboring atoms. Despite the simplicity
of Eq. (92), recent first-principles theories have given some support to this
approximation.
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One virtue of the TB approach over valence force-field models i1s that it is a
quantum theory without much complication. As compared to first-principles
theory, the TB approach is easier to execute, particularly when applied to
complicated systems such as alloys and superlatices. In actual applications,
the TB calculation either i1s carned out using the full band-str. . ture
calculation (BS), or is approximated by simpler local theory such as
Harnison’s (1980, 1983a, and 1983b) bond orbital model (BOM).

a. Band Structure Calculations

The simplest TB Hamiltonian contains the s and p atomic term values ¢,
and ¢, for both cations and anions, and the nearest-neighbor two-center
interactions V,,, V,,,, V,,, and V.. To be more explicit, the 8 x 8
k-dependent Hamiltonian contains the term values as the diagonal matrix
elements, while the off-diagonal matrix elements between the cation and

anion orbitals are given by

H, (k)= é*dh (d), 93)
d

where the sum runs over the four first neighbor atoms specified by the bond
displacements d. The ys are the orbital indices for s, p,, p,, and p_. The h_ .
values are related to the two-center V’s by the Slater-Koster (1954) relations:

hy = V., (94)
hox = @, Vipa, (95)
hex = aiVppe + (1 = a})Vppm, (96)
hey = 0,05(Vope — Vopu)s 97

where «; = x,/d are the direction cosines of d and the Vs depend only on the
length d.

Once the values of these TB parameters and their dependences on the bond
length are known, the Hamiltonian at each k inside the Brillouin zone (BZ)
can be evaluated, and the summation of k carried out to obtain the band-
structure energy, which, when added to the repulsive energy, gives the total
energy of any specified geometry. All the elastic constants, associated internal
displacements, and transverse optical phonon frequencies, are easily calcu-
lable following the procedure of Section 2. The only point to note is the k-
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sum, which without strain can be calculated accurately by using the 10 spe-
cial k points (Chadi and Cohen, 1973) in the irreducible wedge of the BZ.
Under strain, the crystal symmetry changes; one needs to extend these special
k points to other nonequivalent wedges. However, since the sum of the
valence-band energies as a function of k is a rather smooth function, a
uniform sampling over the whole BZ converges very quickly. A § x 5 x §
gnid 1s sufficiently accurate for the required calculations. To avoid the
numerical inaccuracy inherent in direct energy subtractions, one can also
calculate the second derivatives directly by using perturbation theory.

Perturbation theory starts with the expansion of the k-dependent Hamilto-
nian H in powers of the infinitesimal strain parameter e, keeping terms up to
second-order:

H(k)=H0+Hle+%H2e2, (98)

where H is the strain-free Hamiltonian, and H, and H, are, respectively, the
first and second derivatives with respect to e evaluated at e = 0. The oand
energy contribution to the strain coefficient then comes from the second
denvative of E,, with respect to e, denoted by

G2Ey, S [<ok|H, [ck)|?
R D Y

(99)

where ¢.(k) and |ck) are, respectively, the eigen energies and eigenvectors of
H, for the conduction bands, and vk stands for the valence bands. Note that
the inter-valence-band contributions in the second-order perturbation sum
cancel exactly so they are not needed in Eq. (99). To evaluate these matrix
elements one needs to have the first and the second strain derivatives of the
two-center interactions and the direction cosines a;. For the strain para-
meters e defined in Section 2, and for the two center interactions V that scale
as 1/d", the following results are useful.

(1) For the bulk modulus, the direction cosines do not change, and we have

oVjde= —nV  and  0*V/de* = n(n + 1)V.
(i1) For C,, — C,, with e specified in Eq. (9), we get

aa,-/ae = ai(én - 6,‘2), azaJaez = a,-[3(5“ + 6"2) - 4]/3, aV/ae = 0,
and
£V oe* = anV)3.
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(i) For C44 with the strain e given in Eq. (11) and an internal displace-
ment u, we find

dV/0e = —na,a,V, ¢V/ou = nayv/d,
Ox;/de = (6;,a; + 0,52,)/2 —x22,,
Oa,/0u = —d,5/d + a05/d, é*Vjée? = n(n — 1)V)9,
&2Viou? = n(n — 1)V)(3d?),
0%a,/0e? = —a(d;, + 6;2)/12, O*ay/0ut = —26,3%,/d?,
¢*V/(Gedu) = —n(n + 2)a,2,25/d,

and finally
S2a/(edu) = (8;,0,a5 + 0;2%, 23 + 20,3%,2, — ba,a,a,25)/(2d).

Also note that three seccnd derivatives of the band-structure energy are
needed, namely ¢%E, /de?, ¢2E, /(decu), and é?E, /ou? for the evaluation of
C'2, D, and ¢ of Eq. (13), respectively.

b. Bond Orbital Model

Harnson’s (1980, 1983a, and 1983b) bond orbital model (BOM) empha-
sizes calculations of the TB total energy in terms of local energies. One special
feature of the BOM is its universality. Another feature is that its simple and
often analytical forms provide direct insight into the essential physics.
Although BOM aims at predicting trends, it is reasonably accurate in many
cases.

The band-structure energy, or the center of gravity of the valence band, in
BOM is computed in the following steps. The terms involved are indicated in
Fig. 2.

(1) Construct the sp® hybrid orbitals |h) for each atom; these hybrid
orbitals are directed toward the neighboring atoms. For example, the hybrid
in the [111] direction is given by

|h> = (Is> + |p> + |p,> + |pD)/2. (100)

The hybrid energy is then given by &, = (h|H|h) = (g, + 3¢,)/4. In the
zincblende structure, the cation hybrid energy &5 is in general different from
the anion hybrid energy 2. Note that the two hybrid orbitals of the same
atom but in two different directions are now coupled by the so-called metallic
energy V, = ChlHIR ) = (g5 — £,)/4.

(2) Construct the bonding and antibonding molecular orbitals, |[b) and
|a), from the two hybrid orbitals |h“) and |h*) directed toward each other
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F1G. 2. Labels of the interactions between hybrids associated with an adjacent anion-cation
pair. V,,(V,¢) is the interaction between two hybrids on the same anion (cation); the “covalent
energy™ V, is the interaction between anion and cation hybrids that point toward one another
along the bond direction; V7 is the interaction between an anion hybrid in one direction and an
adjacent cation hybrid pointing in a different direction. The “ionic energy™ V, is half the
difference betwen cation and anion term values. The lower segment of the figure depicts the
splitting of the hybrid energy levels by the V', and V, interactions.

along the same bond by diagonalizing a 2 x 2 matrix with £5 and & on the
diagonal, and V, = (h°*|H|h*) as the off-diagonal matrix elements. The

resulting energies for |b) and |a) are g, =&, —/V2+ V3 and ¢, = ¢, +
V2 + V2, respectively, where ¢, = (¢ + €})/2 is the mean hybrid energy,
V, is the covalent energy, and V; = (¢f — €})/2 is the polar energy. The eigen
states can also be written explicitly in terms of these energies:

16 = /(1 + &)/21h*) + /(1 — a,)/21 K, (101)
lay = — /(1 = a)21h*y + J(1 + )21k, (102)
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where , is called the polarity and is defined as
oy = V3/(V3 + VD2 (103)

(3) The quantity ¢, would be the center of gravity of the valence bands, if
interactions between states on different bonds were neglected. Harrison
(1983b) incorporated these interactions in a perturbation theory in which the
change of the bonding energy is given by

Ag, =) [KbIH|a)|*/(ey — £2), (104)

where the sum runs over the antibonding states of the surrounding bonds.
Note that the interactions among the bonding states lead to the formation of
the valence bands, but do not shift their center of gravity; therefore, these
interactions need not to be considered in the total energy calculation.
Including the energy correction Ag,, the final band-structure energy per bond
(which contains two electrons) is given by

Eb = 28b + 2A8b. (105)

Harrison (1980) referred to the second term as the metallization energy.
Besides providing a simple means for evaluating the center of gravity of the
valence electron, Harrison’s BOM also provides a set of universal TB
parameters. Based on comparison with the free-electron band width (Froyen
and Harrison, 1979) and with empirical TB parameters, Harrison (1983b)
deduced the following set of universal two-center interactions:

Vaa' = "u‘hz/(mdz)’ (106)

with n,,, = —1.32, n,,, = 1.42, n,,, = 2.22,and n,,, = —0.63, where m is the
free-electron mass and d the bond length. In units where disin A and V in eV,
V., = 7.62 n,,./d*. The pair-repulsive energy u in the BOM is taken as
resulting from the overlap of wavefunctions of the orbitals on the two centers
and was shown to have the form

u = ug(do/d)*, (107)
where d,, is the equilibrium bond length. The value of u, is determined by

requiring that d, is the experimental value. Note that the d dependences of
both V., and u are taken to be the proper scaling not only among different
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systems, but also within the same system, as the bond length varies under
distortions.

Under these assumptions, the bond energy E,, .4, Which is defined as the
difference between the energy per bond in a semiconductor and the average
energy per two electrons in the free atoms, i.e., Epng = Ep + uo — 2¢, takes
the following simple form for a nonpolar semiconductor (Harrison 1983a):

Epons = Vo(1 — o + 922/16), (108)

where a,, is called the metallicity and is defined as 2V;/V,. For a polar
semiconductor, E. .4 becomes slightly more complicated:

Ebond = 25;. - 28— Z(Vg + Vg)llz

1 9
«[1 -2+ et s viaE+ v | (109
where a, = /1 — o is called the covalency, and ¥, and V,, are the metallic
energies for the cation and the anion, respectively. The bulk modulus also
takes a very simple form; for a group-IV semiconductor, it reads

B = —2V,(1 — 922/16)/(\/3 d%), (110)

and for a polar semiconductor, it becomes

B=-2v, [ 2 (st — Vi + ViIVE + V§>] [(Be). am

These expressions show that the bulk modulus varies as 1/d° in the pure
covalent case, and as 1/d° in the extreme ionic limit V; > V,. Note that this
result is different from the 1/d%-3 dependence in Cohen’s (1985) formula and
the 1/d* scale in VFF.

Shear strains cause a semiconductor to shift away from perfect tetrahedral
symmetry. To deal with the shear elastic coefficient, the BOM has to be
modified. A simple approximation is the rigid hybrid model (Harrison,
1983b; van Schilfgaarde and Sher, 1987a and b), in which the hybrid orbitals
of each atom are assumed to remain in their original tetrahedral directions
despite the lattice distortion. Then the hybrids of two nearest-neighbor atoms
making up the bonding and antibonding states no longer are directed toward
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each other, as shown in Fig. 3. There is a misalignment angle 6 between each
hybrid and the line connecting the two atoms, and the convalent energy V', is
given by

1
Vo(0) = Z [Vie — 2/3cos 0 V,,, — cos? 8 V,,, + 3(1 — cos? B)V,,.]. (112)

The lowest-order change 8V,, caused by an infinitesimal angular misalign-
ment 66, is then given by

1 2
oV, =7 (V3Vops + 3Vyps = 3V,pa )(6). (113)

Under the strain e described in Eq. (9) for C,, — C,,, there is no bond length
change, and (66)? = 2e¢?/3. If one assumes that the metallization coupling is
only through the metallic energies V,c and V;,, as has been assumed so far,
then the change of the crystal energy is the change of the band-structure
energy due to 6V,. Then, according to Egs. (10) and (105),

JoE
Ciy—Cyy = f 220 51, e?

=%;a(\/3-V +3V,,,—3V,,,,) (114)

[1 + (g—ga )(V’c+ VZOAVE+ V )].

Harrison (1983b) has pointed out, however, that in addition to V,, other
interactions such as ¥} shown in Fig. 2 produce important contributions to
the shear elastic constant. By arguing that these other contributions must
cancel those associated with the change 8V, arising from the metallization
energy in a rigid rotation, Harrison deduced the following expression:

3
C,y—Cyy = %a?(ﬁV +3V,,0 — 3V,,.). (115)

Under the strain e for the C,, given in Eq.(11) and with an internal

displacement given by u = nd/ﬁ as described in Section 2, the bond
misalignment angles for the four bonds have the same magnitude with
(66)° = 2(n + e/2)*/9. The four bond lengths also change, with the change for
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F1G. 3. A schematic picture of the hybrids, treated as rigid, in a shear distortion leading to
Cn -C 12

one pair given by or, = dr, = d + ¢and by or; = dr, = —J + ¢ for the other
pair, where & = (¢ — n)d/3 and ¢ = (n + ¢/2)?d/9. If again one assumes that
the metallization is only through V,, then the strain energy density can be
shown to be given by

U = 9B&%/(2d%) + 3(C,, — C,,)(56)*

= B(e — ”)2/2 + (CII — sz)('] + 8/2)2/3. (116)

For a given strain e, U can be minimized with respect to n, which yields the
Kleiman displacement parameter { = n/e with { given by

{=(B—C/3)/(B + 2C/3), (117)

where C = C,, — C,,. Finally, from U = C,,e?/2, the following relation-
ship’ is established:

9/C4a = 6/C + 4/B, (118)

or

7 This is an expression corrected from one published previously (van Schilfgaarde and Sher,
1987a and b).
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If one includes the effect of V7, the energy density will involve an additional
term that couples or and 66. Then the analysis is no longer simple.

The preceding explicit formulas for the elastic constants in BOM are not
much more complicated than the valence force-field model. However, they
relate macroscopic forces to intrinsic atomic interactions. It is interesting to
note that the simple identity relation of Eq. (119) holds very well. As can be
seen in Table I1I, this result is certainly better than the I, of Eq. (78), and i1s
very competitive to Martin’s identity I,,, which requires the inclusion of his
particular treatment of Coulomb forces. Because the Coulomb energy is not
included explicitly in Eq. (119), its contribution to the elastic constants is
probably small.

c. Numerical Results and Quantitative Applications

To study the quantitative aspect of the theory, one first needs to establish
the TB parameters. Table IV lists the term values we will use. The values of
the outermost valence levels are taken to be minus the experimental first
1onization energies listed in Kittel's (1986) book, and the other term values
are deduced from calculated extraction or promotion energies using norm-
conserved atomic pseudopotentials (Bachelet ez al., 1982). These term values
are very similar to Mann’s (1967) Hartree-Fock calculations used by
Harrison (1980), which are also given in Table I'V. The major difference in the
two sets occurs in heavy elements, where relativistic s-shifts are important,
but were not included in Mann's results.

Table V lists the values of bond lengths, bond energies E, .4, the elastic
coefficients B, C = C,, — C,,, and C,,, and the zone-center TO phonon
frequencies w for a selected group of systems to be examined in the remainder
of this section. Experimental values are also presented, with the exception of
extrapolations for the elastic constants of AIP and AIAs. Table VI compares
results between the BOM and the full band-structure (BS) calculation using
Harrison’s universal TB parameters. Except for the Ge and HgTe values, the
agreement between the two calculations for E, .4 is within 109, or better. The
calculated E, .4 values are also in fair agreement with the experimental
values except for diamond. Since diamond has a much smaller bond length
than the rest of the systems, this discrepancy is an indication of a limit to the
scaling rules for both V,,. and u. Although the trends for the bulk moduli from
both calculations are similar, the calculational errors in the BOM can be as
large as 509,. Also note that the calculated values of B for most systems are
only about one-half of the experimental values. The tabulated values of C and
C,, for BOM are based on Eqs. (115) and (118), respectively. Considering the
simplicity of these formulas, the agreement with the band structure calcula-
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TABLE 1V

TERMVALUESUSEDINTHE PRESENTCALCULATIONSAND MANN'S(1961)HARTREE-
FOCK VALUES AS USED BY HARRISON (1980).

Present Mann
Element
& Ep E, 5p

Cu -172 —~2.96 -1.72 -2.37
Ag —7.57 —~354 —-7.06 —261
Au —9.22 -391 —6.98 —-2.67
Be -9.32 —~541 —841 -579
Mg —~7.62 -297 —6.88 —3.84
Zn -9.39 —4.09 —796 —-402
Cd -8.99 -4.17 -7.21 -399
Hg —1043 —4.35 -7.10 -395
B —14.00 —~830 —13.46 —843
Al —11.78 —~598 -~10.70 -5
Ga —-13.23 —-590 —~11.55 —5.67
In —-12.03 —5.56 —-10.14 -5.37
C —19.81 ~11.26 -19.37 -11.07
Si —~15.03 —~8.15 —~14.79 —-7.58
Ge —16.40 -~7.75 -15.15 -1733
Sn —14.53 -~7.03 -13.04 —6.76
Pb —15.25 ~-645 —-1248 —6.53
N —26.08 —14.54 -26.22 -13.84
P —-19.62 —-10.57 -19.22 -9.54
As —-20.02 —993 —1891 —8.98
Sb —~17.56 -8 —~16.02 —8.14
O —28.55 —13.561 —-34.02 -16.72
S -21.16 —10.39 —~2401 -11.60
Se ~2141 —-9.90 -22.86 —10.68
Te —-19.12 ~9.32 -19.12 —-9.54
F —-36.23 —17.44 —42.78 ~19.86
Cl —~25.81 —13.05 -29.19 ~13.78
Br ~2495 -12.01 -27.00 ~1243
I —-21.95 -10.79 ~22.34 ~10.97
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tions is remarkable. However, the overall calculated values for these two
shear coefficients are also consistently smaller than the experimental values.

The above comparisons show that the BOM and BS calculations predict
similar qualitative trends for the binding energies and the elastic constants. In
this regard, the BOM has the advantage of providing explicit forms to show
the dependences on bond lengths and polarities. However, the merit of the
TB theory over the valence-force model is in its ability to incorporate atomic
quantities to mimic quantum mechanical effects. To be useful for specific
material science applications (for example in alloy surface segregation, see
Patrick et al., 1987 and 1988; Sher et al., 1988), the theory has to be more
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TABLE V

EXPERIMENTAL PROPERTIES OF SEMICONDUCTORS*

d Epond B C Cea w
C 1.540 —3.68 44227 95.120 §7.740 1332
Si 2352 -2.32 9923 10.274 8.036 520
Ge 2,450 —1.94 7.653 8.189 6.816 301
AlP 2.367 -2.13 8.600 6.900 6.150 440
AlAs 2451 —1.89 7.727 7.160 5420 361
AlSb 2.656 —1.76 5.817 4428 4.076 366
GaP 2.360 -178 9.143 7.780 7.143 367
GaAs 2.448 —1.63 7.690 6.630 6.040 269
GaSb 2.640 — 148 5.792 4946 4,440 231
InP 2.541 —-1.74 7.247 4.460 4.600 304
InAs 2.622 —1.55 5.794 3.803 3.959 219
InSb 2.805 -1.40 4.831 3.130 3.132 185
ZnS 2.342 -1.59 7.637 3.990 4.558 279
ZnSe 2454 -1.29 6.457 3.560 3.984 213
ZnTe 2.637 —-1.20 5.090 3.060 3120 177
CdTe 2.806 -1.10 4.210 1.680 2.040 141
HgTe 2.798 —0.81 4.759 1.817 2.259 116

“Values of bond length d, bond energy E, ., bulk modulus B, and shear coefficient
C=C,, — C,, used to determine the parameters in Tables VII through XI. Aiso listed are
the experimental values of C,, and the TO optical phonon mode w at I" to be compared with
the calculations. All the elastic constants are in units of 10'! dynes/cm?®, d in A, E,,, in eV,
and w in terms of wave numbers in 1/cm. All bond lengths are deduced from the lattice
constants quoted by Zallen (1982). The values of E,,, are taken from Harrison (1980), Table
7-3, except for AlSb, ZnTe, CdTe, and HgTe, which are deduced from the Phillips (1973)
Table 8.2. The elastic constants are taken from Table III, and the phonon frequencies are
taken from values compiled in *“Landnlt-Borstein Numencal Data and Functional Relation-
ships in Science and Technology,” New Series, edited by K.-H. Helllwidge, Vols. 17 and 22.

quantitative. Successful quantitative application of the TB theory has been
made by Chadi (1978, 1979, and 1984) in his study of semiconductor surfaces.
The comparisons in Table VI indicate that the BOM should be treated
differently from the BS calculation when considered for quantitative applica-
tions. If one wishes to calculate the properties using the local picture, one
should use the BOM. If one wants to carry out the TB Hamiltonian precisely,
one needs to adopt a different set of parameters based on the BS calculation.
For this reason, we shall next consider quantitative applications of BOM and
BS calculations separately.

There are many ways to parametrize the TB theory. Chadi (1979, 1984)
used a simple form for the repulsive energy u = a + b(d — dy) + c(d — d,)?
and the same 1/d? scaling for the TB parameters V,,.. To keep the theory as
close to Harrison’s (1983a and 1983b) form as possible but free it from the
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TABLE Vi
CoMPARISON OF BOM AND BS MODELS' PREDICTIONS *

Evonas B C Cea

BS BOM BS BOM BS BOM BS BOM
C -7.17 ~7.08 49.31 47.39 67.15 67.10 4445 51.78
Si —2.39 ~2.50 4.65 4.18 7.19 8.07 5.10 5.29
Ge -203 ~234 2.89 1.91 472 6.58 3.69 300
AlP -2.59 ~2.54 3.81 421 445 4383 3.45 410
AlAs =222 -220 312 3.66 385 407 291 3.50
AlSb —1.64 ~1.62 1.99 247 275 312 2.11 2.54
GaP -2.32 ~2.16 3.63 440 448 5.15 3.69 434
GaAs -1.99 —1.85 2.83 3.76 375 430 3.02 3.66
GaSb —1.53 — 143 1.76 245 2.63 340 217 265
InP =221 —2.06 235 291 2.69 293 2.21 2.63
InAs -1.89 -1.74 1.93 2.67 2.38 2.52 1.90 232
InSb —-143 —1.28 1.28 1.97 1.81 217 1.48 1.87
ZnS -183 —-1.79 346 374 353 3.62 27 3.30
ZnSe —1.52 —1.48 2.67 3.06 275 2.67 208 253
ZnTe -1.15 -1.05 1.82 2.16 1.88 1.87 1.50 1.78
CdTe —1.06 -0.97 1.24 1.47 1.22 1.14 0.96 113
HgTe -0.72 —-049 1.23 1.72 1.33 1.31 111 1.30

“Comparison of the tight-binding theory using the full band structures (BS) and the bond
orbital model (BOM for bond energyes E, 4. bulk moduli B, and shear coefficients C =
C,, — C,. and C,,. All energies are in eV and elastic constants in 10'! dynbes/cm?.

1/d* and 1/d* scaling rules for V,,. and u, respectively, we assume the
following forms:

Vier = Vazldo/d)" (120)
and
u = ug(do/d)™, (121)
where the superscript and subscript 0 indicate the values evaluated at the
equilibrium bond length d,. For simplicity, the values of V{2 are taken to be
Harrison's values given in Eq. (106) scaled by a factor f:

VO = fvoer. (122)

Thus, there are four parameters for each system: the scaling parameter f,
the powers n and m, and the value u,. These parameters can be determined by
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requiring that thc model produce the correct experimental values for E,__,.
do, €, — C,- and B. Since C,, — C,, is only governed by V'© in both
BOM and _and calculation, it alone determines the scaling factor /. Then the
bond energy E,.4 can be used to determine u,. The requirement that the first
cerivative of E; be zero at d, then determines the ratio of the powers n/m,
which couples with the equation for the bulk modulus to yield the values for n
and m. One can then use these sets of parameters to check the validity of the
model by calculating other quantities not employed in the fitting, e.g., C,,,
the internal displacement parameter {, and the optical phonon frequencies w
at the zone center. If the results are acceptable, the model can be extended to
more complicated systems such as alloys and superlattices with local
environments similar to the bulk crystals.

Table VII shows the results for £, n, m, and u, obtained from the preceding
fitting procedure by using the full band-structure calculations, and the
corresponding values of C,,, {, and w calculated for consistency checks. The
scaling factor franges from 1 to 1.4 and tends to decrease with an increase in

TABLE VII

FULL BAND STRUCTURE CALCULATION®

f n m u, Cea { w
C 1.390 2.840 3.767 21.924 48.393 0.121 1,459
Si 1.326 3.040 5.001 6.938 8.013 0.511 572
Ge 1.388 3.204 5.278 6415 6.841 0.487 342
AlP 1.294 3.530 5.598 6.435 5.827 0516 447
AlAs 1.464 3.524 5430 7.089 5.598 0.459 384
AISb 1.337 3.268 5.668 4838 3.944 0.564 354
GaP 1.395 3.705 5.683 7.285 6.857 0.501 382
GaAs 1.397 3.633 5.716 6.530 5.791 0.500 292
GaSb 1.431 3471 5717 5.519 4515 0.536 256
InP 1.323 4.240 6.633 5.603 4.260 0.584 304
InAs 1.300 3997 6.427 4962 3.564 0.552 220
InSb 1.353 3.773 6.399 4.350 3.092 0.602 200
ZnS 1.062 3.308 5.996 4225 3.727 0.632 325
ZnSe 1.134 3420 5.994 4260 3.164 0.576 233
ZnTe 1.284 3.306 5.828 4.285 2.813 0.590 205
CdTe 1171 3.656 6.761 3.092 1.701 0.694 156
HgTe 1.173 350 7074 3.080 2.040 0.716 152

“The results for the parameters f, n, m, and u, obtained from the fitting of the
bond energy, bond length, bulk modulus, and shear coefficient C,, — C,, of Table
V using the full band structure calculation. Also listed are the calculated C,,,
internal displacement parameter {, and the TO optical phonon mode w at I'. All the
elastic constants are in units of 10'! dynes/em?, u, is in eV, and w are wave
numbers in 1/cm.
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polarity. In the power dependence of V,,- o (d,/d)", n ranges from 2.8 to 4.3,
which is larger than the n = 2 used in Harrison’s universal TB parameters.
For the repulsive pair energy u = uy(d,/d)™, the power m ranges from 3.8 to
6.8. The ratio m/n falls in the range from 1.3 to 1.9, which is smaller than the
m/n = 2 used by Harrison. The calculated values of C,, for most systems
agree with the experimental data to 109 or better, except for diamond and
ZnS. Note that the experimental data for ZnS are rather dispersed. The
calculated TO optical phonon modes at I in 1/cm for most group IV and I11-
V systems also agree with experiments to 10%; or better. The discrepancies for
the II-VI systems are larger, about 15%,. Reliable results for { from both
experiments and first-principles calculations are available only for a limited
number of systems. The calculated { in the TB model agrees very well with
those results, as shown in Table I. The overall results for C,,, {, and w in the
TB calculations are equivalent to those based on the valence force model,
including Martin’s Coulomb force corrections. By construction, the TB
model also produces the correct cohesive energies, bond lengths, bulk moduli
and shear coefficient C,, — C,,, because these quantities are used to fit the
parameters.

The results in Table VII are based on the term values given in Table IV and
the TB parameters scaled from Harrison’s universal parameters. It is useful to
know how the predictions are influenced by these parameters and the fitting
procedure. Table VIII shows the results based on Chadi procedure in which
the TB matrix elements V. are scaled as 1/d?, and the repulsive pair energy is
taken to be u = uy + u,(d — d,) + u,(d — dy)*. The parameter u, is set to
produce the correct bond energy, u, is determined by requiring the correct
equilibrium bond length, and u, is fixed by the bulk modulus. Two sets of TB
parameters are tabulated for each system: One is the set used by Chadi (1978,
1979, and 1984), and the other is the set obtained by multiplying Harrison’s
V.. by scaling factor f listed in Table VIII. For convenient comparison, the
zero of the term values is set equal to the anion s energy. Despite considerable
differences in these two sets of TB parameters, the results of the predictions
from both sets are very similar and also very similar to those predicted from
the other procedure used for the results in Table VII. The only noticeable
difference between the predictions in Table VIII and Table VII is that the
present procedure produces larger phonon frequencies and slightly smaller
C.s values. We also note that the fitted parameters u,, u,, and u, and the
predicted values for Chadi’s elastic constant set in Table VIII are not the
same as Chadi’s published (1979) values; these give bulk moduli about 209,
smaller than the experimental values, but give coasiderably better phonon
frequencies.

To parametrize the BOM, several different stages of approximations can
be made. However, for a general application, the full BOM steps presented in
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TABLE VIII
Two SETS OF TB PARAMETERS *

S1

& 8: & ES Vi Vere Vore Veore
Chadi 0.0 7.20 0.0 7.20 —-2.03 2.55 4.55 -1.09
Present 0.0 6.88 0.0 6.88 -241 2.59 4.05 —-1.15

up u, u, C Cus cQ { w
Chadi 7.29 —-9.98 2390 10.66 7.89 11.38 0.49 620
Present 6.93 -9.70 2342 10.27 7.83 11.39 0.51 592

GaAs

& & & & Ve Vise Vire Vor Vorr
Chadi 0.0 9.64 5.12 11.56 -1.70 240 1.90 344 -0.89
Present 0.0 10.09 6.79 14.12 -234 252 2.52 3.94 -1.12

Uo U, u; C Cua co { w
Chadi 5.12 -17.12 18.22 6.36 5.60 8.77 0.54 339
Present 6.53 —8.39 19.90 6.63 5.70 8.53 0.54 322

“Comparison between the two different sets of TB parameters described in the text, the resultant
expression coefficients u,, u,, u, of the repulsive pair energy u, and the predicted elastic constants,
Kleinmann internal displacement parameters {, and phonon frequency w from Chadi fitting
scheme.

Eqgs. (100) to (105) for calculating E, should be followed, regardless of
approximations. The simplest model, referred to as BOM(1), is to include
only V,, and V, in the matrix element (b|H|a’) for the calculation of the
metallization energy in Eq. (104). The next approximation, BOM(2), is to
include V?} as well. Finally, one can include all the first-neighbor interatomic
TB parameters in {b| H|a"); this will extend the [a") to those belonging to the
second-neighbor bonds. This last approximation will be referred to as
BOM(3).

Table IX shows the results for BOM(1) following the parametenzation
procedure described in Egs. (120) to (122). The fittted parameters f, n, m, and -
u, are substantially different from those based on the BS caiculations. The
predicted C,4 for the group IV and III-V systems are slightly larger than the
experimental values, but good for the II-VI systems. The calculated { values,
although not all smaller than those in Table VII, are smaller on the average.
The predicted phonon frequencies are too high.

The parameters and the predicted results from BOM(2) are listed in
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TABLE IX
BOM(1) CALCULATIONS®

S n m Ug Cea 'Y w
C 1.440 2.896 3.809 22.345 61.098 0.142 2,103
Si 1.356 3.208 5.166 7.023 9.729 0.447 695
Ge 1.395 3.666 5.854 6.383 8.240 0.506 416
AlP 1.047 3.334 5.842 4418 6.627 0.460 571
AlAs 1.264 3.530 5.685 5.538 6.668 0431 491
AlSb 1.179 3.170 5.831 3.818 4.482 0.511 411
GaP 1.154 3439 5.744 5.239 7.500 0.453 496
GaAs 1.179 3.337 5.647 4.863 6.340 0.456 358
GaSb 1.274 3.354 5.797 4456 4950 0.500 302
InP 0.999 3.579 6.490 3413 4558 0.522 388
InAs 0.995 3.167 5.960 3.081 3.787 0.496 260
InSb 1.126 3.228 €.105 3.091 3.267 0.543 224
ZnS 0.692 2.750 7.262 1.642 4312 0.580 401
ZnSe 0.750 2.823 6.839 1.821 3.685 0.544 287
ZnTe 0.888 2.715 6.484 1.987 3.156 0.531 248
CdTe 0.734 2.720 8.394 1.018 1.949 0.660 189
HgTe 0.732 2.202 8.810 0.842 2.140 0.677 177

“The results for the parameters f, n, m, and u, obtained from the fitting of the bond energy,
bond length, bulk modulus, and shear coefficient C,, — C,, of Table V using the BOM(1)
described in the text. Also listed are the calculated C,,, internal displacement parameter {,
and the TO optical phonon mode w at I'. All the elastic constants are in units of 10!!
dynes/cm?, ug is in eV, and w is given in terms of wave number in 1/cm.

Table X. These parameters more closely resemble those in Table VIII than do
the values from BOM(1). However, the predicted C,, values are still too
small, and the { values are too large, but the w values are better than those
from BOM(1).

Table XI contains the results from BOM(3); these approach those of the
BS calculations. In comparison with Table VII and the experimental values
in Table V, the BOM(3) does well for w, produces slightly smaller C,,, and
probably slightly larger { values.

In conclusion, the TB method is a reasonable approach to the static elastic
properties of semiconductors. If carried out rigorously, the TB parameters in
Table VII will provide quantitative results for superlattices, alloys, and
possibly surfaces in which the local environments are similar to those in the
bulk. The quantitative predications of BOM are not as good as the BS
calculations, but are still reasonable. The fitted parameters given in Tables IX
to XI allow different stages of approximations to be made using the BOM.
This is especially useful for more complicated systcms, because computation-
ally the BOM is about two orders faster than the band structure calculations.
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TABLE X
BOM(2) CALCULATIONS®

f n m Ug Cas { Wro
C 1.440 2.896 3.809 22.345 55.161 0.319 1672
Si 1.356 3.208 5.166 7.023 7.520 0.652 597
Ge 1.395 3.666 5.854 6.383 6.106 0.720 358
AlP 1.283 3.440 5493 6.171 5.094 0.677 511
AlAs 1472 3.543 5419 6979 5.103 0.640 440
AlSb 1.342 3.249 5.580 4771 3.256 0.706 373
GaP 1.371 3.540 5.490 6.901 5916 0.688 428
GaAs 1.387 3455 5.452 6.306 4.864 0.681 317
GaSb 1.414 3.398 5.593 5.305 3.681 0.717 264
InP 1.307 3.846 6.115 5.339 3.446 0.744 354
InAs 1.298 3.528 5731 4834 2.806 0.706 243
InSb 1.342 3.464 5910 4.204 2.351 0.747 207
ZnS 1.062 3.102 5.728 4075 3016 0.726 373
ZnSe 1.141 3.150 5.587 4.181 25T 0.688 211
ZnTe 1.283 3.067 5.498 4.140 2270 0.704 231
CdTe 1.178 3.271 6.216 3011 1.319 0.764 177
HgTe 1.169 3.046 6.116 2916 1457 0.793 162

“The results for the parameters f, n, m, and u, obtained from the fitting of the bond energy,
bond length, bulk modulus, and shear coefficient C,, — C,, of Table V using the BOM(2)
described in the text. Also listed are the calculated C,,, internal displacement parameter {,
and the TO optical phonon model w at I'. All the elastic constants are in units of 10'!
dynes/cm?, u, is in eV, and w is wave number in 1/cm.

11. SEMICONDUCTOR ALLOYS

The systems to be considered in this section are alloys of the diamond and
zincblende semiconductors, both the ordered and disordered alloys. The
ordered alloys include binary compounds such as SiC, and ternary com-
pounds, such as GalnAs,, in three crystal structures of the types CuAul,
chalcopyrite, and CuPt as shown in Fig.4 (Bernard et al, 1988). The
disordered alloys include binary solutions such as Si, _ ,Ge, and pseudobin-
aries such as Hg,_,Cd.Te and GaAs,__Sb,, where x is the fractional
concentration. These alloys have been widely used and studied; however,
detailed information about their elastic constants is scarce both experimen-
tally and theoretically. One reason for the lack of rigorous calculation is that
the elastic constants of these systems are more complex; existing theories are
not as accurate, particularly for disordered alloys. Another reason may be
attributed to the fact that most properties of these alloys, including their
elasticity, were thought to be reasonably well approximated by the concen-
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TABLE XI
BOM(3) CALCULATIONS*

s n m Uo Cua ¢ w
C 1.336 2.901 3.872 20.814 47.691 0.135 1,531
Si 1.262 3.251 5.346 6.484 7.472 0.580 562
3e 1.302 3.886 6.264 5.942 6.171 0.658 333
AlP 1.193 343 $.77 5.722 4936 0.541 452
AlAs 1.369 3.559 5.507 6.498 43812 0.490 387
AlSb 1.249 3.253 5.669 4.402 3.248 0.619 343
GaP 1.276 3.550 5.575 6.422 5.738 0.542 373
GaAs 1.290 3.445 S.511 5.855 4724 0.549 281
GaSb 1.318 3415 5.704 4923 3.670 0.621 239
InP 1.210 3.812 6.153 4929 3.398 0.604 304
InAs 1.199 3.456 5.724 4.442 2.755 0.579 216
InSb 1.245 3411 5.943 3.871 2.367 0.657 188
ZnS 0.968 3.062 5.848 3618 3.120 0.630 343
ZnSe 1.040 3.097 5.671 3.727 2.611 0.580 247
ZnTe 1.178 3019 5.573 3.31 2.301 0.601 212
CdTe 1.065 3.198 6.368 2621 1.403 0.690 165
HgTe 1.059 2937 6.262 2.523 1.563 0.730 154

“The results for the parameters f, n, m, and u, obtained from the fitting of the bond energy,
bond length, bulk modulus, and shear coefficient C,, — C,, of Table V using the BOM(3)
described in the text. Also listed are the calculated C,,, internal displacement parameter (,
and the TO optical phonon mode w at T. All the elastic constants are in units of 10'!
dynes/cm?, u, is in eV, and w is wave number in 1/cm.

tration-weighted averages of their constituents. Because of the rudimentary
state of the theory, we shall deal only with the simplest elastic constant, the
bulk modulus. Our focus is on the difference between the alloy bulk modulus
B and the concentration-weighted averaged value B, i.e., AB = B — B. There
are several fundamental questions that can be addressed. Is AB positive or
negative? Do the sign and the magnitude of AB depend on the state of order?
How can we calculate the bulk modulus in a disordered system? Analysis of
these questions constitutes the content of this section.

a. Ordered Alloys

Long-range ordering has been found to exist in many epitaxially grown
I11-V semiconductor alioys (Kuan et al., 1985; Jen et al., 1986; Kuan et al.,
1987; Thm et al., 1987; Klem et al., 1987; Huang et al., 1988; Gomyo et al.,
1987 and 1988; Norman et al., 1987; Shahid et al., 1987). Wei and Zunger
(1989) have given a rather complete list of these ordered alloys, most of which
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FiG. 4. Three ABC, structures studied: (-) CuAul structure ordered in [001] direction. (b)

Chalcopyrite structure ordered in [201] direction. (c) CuPt structure ordered in [111] direction.
(Extracted from Wei and Zunger, 1989.)
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1. ELASTIC CONSTANTS AND THEIR ALLOYS 53

are of the form ABC, existing in three different types of structures, CuAul,
chalcopyrite, and CuPt; all have their atomic planes stacked as ACBCACBC,
but along three different directions, (100), (201), and (111), respectively, as
shown in Fig. 4. There have been several first-principles calculations made to
study the structural properties of these compounds; these focused mainly on
the cohesive energies and bond lengths. These results have been compared
with TB calculations by Yeh er al. (1990). As indicated in the preceding
section, one virtue to fitting the TB model for the bulk semiconductors is to
use 1t for interpolating alloy properties. Table XII lists the results for the bulk
moduli of a number of III-V and II-VI alloys derived from full TB band
structure calculations using the parameters given in Table VII. Also listed are
the average values and percentage deviations from the mean AB/B. Note that
all AB values are negative and that most of the magnitudes are small, except
for Ga,AsSb and Ga,PSb; the latter has the largest difference in the
constituent compounds among the alloys listed. Although the magnitudes of
AB get larger for systems with larger differences in the bond lengths, the
dependence does not seem to be a simple function of the bond length
difference. The uniformly negative AB values also appeared in the first-
principles local-density functional calculations for ordered GaAsSb alloys by
Ferreira et al. (1989), as shown in Table XIII.

TABLE XII

ORDERED ALLOYS: TB ELASTIC CONSTANT CALCULATIONS®

AB/B x 100

Alloy Bg, B, ZB, B Ch Ca Cp

AlGaAs 7.695 7.693 7.689 7.009 —0.18 -0.20 -0.25
AlGaP 8.858 8.858 8.854 8.872 -0.15 —-0.15 -0.20
GalnSb 5.226 5.202 3.156 5312 —1.61 -207 -292
AllnAs 6.705 6.691 6.661 €761 —0383 -1.03 —~1.48
InGaAS 6.610 6.579 6.508 6.742 —-1.96 -242 -~347
InAlP 7.876 7.860 7.774 7924 -0.61 —0.08 —1.88
GalnP 8.007 8.035 8.878 8.195 ~1.44 —195 —~3.87
GaAsP 8.328 8.291 8.294 8.417 —1.05 —1.50 —~1.46
GaAsSb 6.314 6.198 6.157 6.741 —-6.34 —8.05 -—-8.66
GaPSb 6.584 6.297 6.188 7.468 ~11.84 —15.68 —-17.14
HgCdTe 4470 4472 4471 4485 -0.33 -0.28 -0.31
HgZnTe 4.890 4887 2632 4.925 ~0.71 -0.76 ~593
CdZnTe 4.611 4.604 4.338 4.650 —0.85 —1.00 —-6.72

°Bulk moduli (in 10" dynes/cm?) of ordercu ' .ys calculated using the full TB band-
structure method described in Section 10. The three structures are chachopyrite (Ch), CuAul
(Ca), and CuPt(Cp) types. B is the average value of the constituent compounds, and
AB=B-B.
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The reason for the negative values of AB, in a very qualitative argument, is
that the bulk moduli of semiconductors scale inversely as high powers of the
lattice constant, and, at the same time, the alloy lattice constant is approxi-
mated well by the mean value, by Vegard’s law (1921). This implies that the
value of B at the mean lattice constant should lie below the straight-line
average. Since the TB results for the bulk moduli constants should not be
qualitatively different from the valence force-field model (VFF) predictions,
most of the key physics for the bowing of B should be contained in a VFF
analysis. The major effects in the VFF can in turn be realized from the
following simple analysis.

Consider the local structure of a CuAul or chalcopyrite crystal ABC,.
Focus on a local tetrahedral cluster A,B,C with the two A atoms and two B
atoms on the vertices of the tetrahedron and the C atom near the center. Let

the coordinates of the two A atoms be (—1, 1, — l)d/\/g and (—-1,1, = 1)d/

ﬁ and the two B atoms be at (1, 1, l)d/\/g and (1, -1, — l)d/\/g. Let the
force constants be k, and kg, and equilibrium bond lengths be d, and dj for
the AC and BC bonds, respectively. To attain equilibrium, the central C atom

is displaced by (¢, O, O)d/\/- 3. We further define mean values d = (d, + dg)/2
and k = (k, + kg)/2, relative differences 0o = (d, — dg)/d and A, = (k, —
kg)/k, and d = d(1 + 8). Then the AC bond is stretched by an amount
d( + €/3 — 6,/2) from its equilibrium value, and similarly, the BC bond is
compressed by d(8 — ¢/3 + ,/2). The strain energy for any arbitrary § and ¢
is given by AE = d?[k (6 + €/3 — 60/2)* + ke(d — &/3 + 8,/2)*]. When AE is
minimized with respect to § and ¢, one finds 6 = 0 and ¢ = 36,/2, and the
minimum AE is zero. If the crystal expands uniformly with é having a fixed
small value, then & becomes ¢ = 38,/2 — 340 and AE = 2k(1 — A2/4)d?6>.
Thus, the effective spring constant is

which is smaller than the average value k. This weakening of the restoring
force constant in the alloy is due to the internal displacement, represented by
¢ in the preceding model, which provides an extra degree of freedom for
relaxation in response to the external stress. The bulk modulus B is
proportional to k./d, so the alloy bulk modulus minus the mean B is then
given by

AB = B(8,A, — 62 — A2/4), (124)

where we recall the definitions 8, = (d, — d,)/d and A, = (k, — k,)/k. Since
and J, and A, tend to have different signs, the bond l2ngth difference gives an
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extra negative contribution to AB (the first two terms). If both the bond-
stretching force constant « and the bond-angle restoring force § in the VFF
are included, the equilibrium value of AE is no longer zero, but the deviation
AB can also be shown to be similar to Eq. (123) and is given by

3 3Ax + AP a2 (A2)?
AB = §[5°(—3&T/3—> % =3 (x + 2B)(3x + ﬁ)]//4’ (125)

where Ax = (a, — a,) and a = (a;, + a,)/2 and similarly for Af and B.
Equation (125) reduces to (124), if g is set equal to zero.

The above descriptions illustrate two mechanisms for the negative AB
values, the 1/a% scaling of B, with g ranging from 3.5 to 9, and more degrees of
freedom for internal relaxation. Quantitative results should be described by
TB, because in addition to the strain energy, there is also some chemical effect
built into the TB theory. Although these ordered compounds have been
found from epitaxial growth, the bulk moduli are probably difficult to
measure, because these alloys are not single bulk crystals and because the
ordering is only partial. It is interesting to note that the B values for a SiC/
AIN alternating layer superlattice along (100) and for the constituent
compounds have been calculated by Lambrecht and Segall (1990) using the
LMTO; their percentage deviation from the mean AB/B was found to be
about —29;, which falls in the range of the ternary alloys in Tables XII and
XIII.

Not all the mechanisms considered above apply to the ordered compounds
of the elemental semiconductors, because internal relaxation under pressure
may not be allowed, e.g., if the structure is assumed to be zincblende.
Unfortunately, a simple analysis of the elastic constants of the 4-4 com-
pounds cannot yet be made, because the tight-binding and VFF parameters
have not yet been extended to deal with the atomic pairs not existing in the

TABLE XIII

ORDERED ALLOYS: BULK MODULY

GaAs GaSb Ga,AsSb Ga, As,Sb Ga,AsSb,

Structure zb zb CA CH Cp LU FA LU FA

B 7.46 5.18 6.10 592 5.96 6.52 0.58 5.40 5.31
AB/B x 100 -35 -6.3 -57 -54 -45 -6.1 =11

“Calculated bulk moduli for GaAs, GaSb, and GaAsSb ordered alloys by Ferreira et al.
(1989), and the corresponding percentage deviation from the concentration-weighted average.
The structures are zincblende (zb), CuAl (CA), chachopyrite (CH), CuPt (CP), luzonite (LU),
and famatinite (FA).
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constituent crystals. However, several first-principles calculations have been
made on the ordered SiC and SiGe (Martins and Zunger, 1986; Qteish and
Resta, 1988; van Schilfgaarde, 1990). The main results are listed in Table
XIII; the theoretical results were calculated for the zincblende structure. The
plane-wave pseudopotential (PP-PW) calculation of Martins and Zunger
(1986) for SiC gave a — 219 value for AB/B, which is in reasonable agreement
with the experimental value of — 179,. This is consistent with the qualitative
argument based on the 1/d% (q > 3.5) scaling of B. The theory also yielded a
negative formation energy, which also agrees with experiment. For SiGe, the
theoretical calculations cited in Table XIV gave positive formation energies,
which are consistent with the fact that no ordered bulk compounds of SiGe
have been grown. However, some weak ordering has been found in the
epitaxial SiGe films (Ourmazd and Bean, 1985). The calculated values of AB/
B for the zincblende SiGe are either slightly above or just below zero. These
differences, however, fall witkin the uncertainties of the present first-pnnci-
ples theory. The best conclusion that can be drawn from these results is that
the B value for SiGe should be very close to the mean value.

b. Disordered Alloys

Disordered binary alloys A, _ B, of diamond semiconductors and pseudo-
binary alloys A,_,B,C of zincblende semiconductors AC and BC are
considered in this section; they are not amorphous materials, as they still

TABLE XIV

BULK MODULI OF ORDERED BINARY ALLOYS AB OF THE DIAMOND SEMICONDUCTORS A AND B
FROM THEORIES AND EXPERIMENT

SiC PP-PW° Experiment
B(C) 50.3 4423
B(Si) 9.53 9.92
B(SiC) 234 224
AB/B(%) -21 -17

SiGe PP-PW* PP-PW? ASAC FP-LMTO*
B(S1) 9.53 9.8 8.80 9.58
B(Ge) 7.75 7.7 6.25 7.05
B(51Ge) 8.73 8.7 7.38 8.31
AB/B(%) 1 0 2 0

*Martins and Zunger (1986).
*Qteish and Resta (1988).
‘van Schilfgaarde (1990).
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possess their constituent diamond and zincblende lattices, respectively, as
characterized by their crystal diffraction patterns. We shall consider the
pseudobinaries first. The alloying atoms A and B in these alloys belong to a
fcc sublattice, and the C atoms to the other sublattice. However, the positions
of the A and B atoms are not necessarily locked precisely on the lattice sites.
The extended x-ray absorption fine-structure spectroscopy (EXAFS) data
(Mikkelsen and Boyce, 1982 and 1983; Boyce and Mikkelsen, 1985; Balzar-
otti et al., 1985) have consistently shown a bimodal distribution of the bond
lengths in these alloys, although the average lattice constant follows the
Vegard (1921) law a = (1 — x)a,¢ + xagc. Figure 5 shows an example of the
results for the bond lengths in Ga, .. In As deduced by Mikkelsen and Boyce
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F1G. 5. Near-neighbor bond lengths (GaAs and InAs in the Ga, _,In_As alloy) as a function
of composition x, measured by EXAFS (Mikkelsen and Boyce, 1982).
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(1982) from their EXAFS data. In a first approximation, the crystal structure
of an alloy can be viewed as having the A and B atoms on their fcc sublattice
with an average lattice constant, while the C atoms are distorted away from
their lattice sites, in a way similar to the local structures of the three ordered
superlattices considered earlier. The difference is that there is no long-range
superlattice ordering of the A and B atoms in the disordered state. This
simple crystal picture is only a first approximation; the EXAFS experiments
just cited also indicate that the sublattice of the A and B atoms is less than a
perfect fcc. There are also theoretical calculations (e.g., Sher et al., 1987; Wei
et al,, 1990) that suggest a certain degree of short-range ordering in these
alloys, namely that the arrangement of the A and B atoms is not random.
Figure 6 shows an example of the calculated deviations (Sher et al., 1987) of
the probabilities from random distribution, Ap, = p, — p? for Ga, _,In,As as
a function of alloy concentration x, where p, is the probability of having n Ga
atoms and 4-n In atoms on the vertices of a local tetrahed:ai cluster in the
alloy, and p? = ,C,(1 — x)"x*", where ,C, is a binomial coefficient, is the
corresponding value for the random distribution.

The structural energy needed for calculating the elastic constants of a
disordered alloy is an ensemble average of the total energy over the
distribution of the alloying atoms under strains. It has been demonstrated
(Ferreira et al,, 1989) that the total energy of a semiconductor can be
decomposed into the sum of multisite correlation energies, from the single-
site, the pair, and up to a cluster containing a handful of sites. In other words,
the multisite correlation energies converge to zero quickly at a manageable
number of sites. This implies that the structural energy of an alloy is an
average of these multisite correlation energies. Connolly and Williams (1983),
working on metal alloys, proposed that these multisite correlation energies be
deduced from the ordered systems that are composed of the same atoms. This
scheme allows a direct application of the first-principles theory in the
calculation of the energy parameters. These energetics can then be used in the
alloy statistics such as in the cluster variational method of Kikuchi (1951) or
in the Monte Carlo calculations to deduce the distribution functions or the
average properties. This theory has been carried out extensively for semicon-
ductor alloys by Ferreira et al. (1989), and respectable resuits have been
obtained for the phase diagrams and alloy equilibrium properties. For this
theory to fit the elastic constants requires detailed dependences o. the
multisite energies under different strains that have yet to be worked out. Also,
the validity of using the energy parameters deduced from ordered alloys in
the disordered systems needs to be examined further.

There is a different cluster approach, which directly relates the alloy
Hamiltonian to the distribution function (Gautier et al., 1975; Chen et al.,
1987; Berera et al., 1988; Dreysse et al., 1989). In this approach one focuses
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Fi1G. 6. Cluster populations relative to those in a random alloy x; — X; for clusters with
n;=0,1,2,3, 4 Batoms for a Ga, _,In,As alloy equilibrated at 600 K.

a particular cluster in an alloy ensemble. The average energy per cluster can
be written (Chen et al., 1988) as

&> =YY (e,, +1n, )p,p,,,. (126)

on where ¢, is the energy of a cluster detached from a given alloy configura-
tion, and h,,, is the interaction energy, which is the change of energy of the
combined system when the cluster is put back into the alloy. In Eq. (126), p, is
the probability that a cluster is of the type n, specified by the number of A and
B atoms and their arrangements, and P,,, is a conditional probability that the
surrounding environment is in state m when the cluster is in state n. The
factor 1/2 in Eq. (126) is to eliminate the double counting in the total average
alloy energy (E) = M{¢), where M is the ratio between the size of the alloy
and the cluster. If one writes {(¢) = Z p,&(n), then an effective cluster energy
can be defined as

&n) =) (e,, + ! k. )P,,,,,. (127)
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This procedure is particularly useful when the interaction energy 1is
short-ranged. One can start with a small cluster and a given probability
distribution, then calculate the effective cluster energies from Eq. (126). These
energies are then used in a statistical theory to deduce a cluster distribution,
which in turn is used to calculate a new set of ¢(n) and distribution functions,
and the process is iterated until it converges. It should be pointed out that to
compute the total energy of an alloy quantum mechanically, one needs to
solve the Schroedinger equation for a Hamiltonian that does not have the
lattice translational symmetry so indispensable in traditional band-structure
theory. If the fluctuation of the alloy potential from the virtual crystal
approximation (VCA), where the alloy potential is approximated as the
concentration-weighted average, i1s small, then the next leading correction to
VCA can be obtained from perturbation theory. This should work for most
semiconductor alloys except for systems with large potential fluctuations
such as Hg, _,Cd, Te (Chen and Sher, 1982; Spicer et al., 1982; Hass et al.,
1983). A more general but more difficult approach is to extend the present
molecular coherent potential approximation (MCPA) (Hass et al., 1983) to
clusters and to achieve a triple self-consistency (Chen et al., 1987): consisten-
cy between cluster distribution and Hamiltonian, between the Hamiltonian
and electron density, and between the self-energy operator X in the cluster
CPA theory and the potential fluctuations. To date this theory has been
carried out only for metal alloys, and then only within the single-site KKR-
CPA with a random distribution (Schwartz and Bansil, 1975; Gyorffy and
Stocks, 1978). Major work is needed to determine if this approach can
achieve the same degree of ngor for disordered alloys as self-consistent
density functional theory, which has been successfully used in dealing with
crystalline semiconductors.

The above idea has been applied to an elastic medium model to deduce a
mean field theory for the internal strain and bulk modulus in semiconductor
alloys (Chen ez al., 1988). This theory starts by assuming that the alloy has an
effective lattice constant and effective modulus. When part of the effective
alloy medium is replaced by a specified cluster, there will be strain energy
introduced. It was shown that this strain energy can be taken as the effective
energy &(n) for that cluster, the probability distribution p, within a statistical
theory can then be deduced. The internal strain energy is calculated as
E = M{&) = M X p,e(n). When the alloy is under an external pressure 6P,
the effective cluster energy will change by an amount ée(n), which implies a
change of the total energy by an amount 6E = M{de(n)). Then the bulk
modulus of the alloy can be obtained from AE = 4(6P)?V/B, where V is the
alloy volume. The mean-field nature of this approach is evident from the fact
that the calculation requires knowledge of the alloy lattice constant and
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elastic constants that are only assumed and are required to be calculated self-
consistently. To illustrate this self-consistency procedure, let us consider the
following simple spring model for a random pseudobinary alloy A, _,B,C.
The cluster corresponds to the four bonds surrounding an “impurity” atom
A or B, and the environment of the cluster corresponds to the 12 bonds that
connect inwardly to the cluster and outwardly to a rigid lattice of the effective
alloy. It 1s worth mentioning that there have been detailed analyses of the
valence-field force models for the strain energies of semiconductor alloys in
regard to the range allowed for lattice relaxation (Martins and Zunger, 1984;
Chen and Sher, 1985). It was found that by neglecting the bond-angle forces,
one can use a shorter range of lattice relaxation to obtain the correct mixing
enthalpies and bond lengths. The simple model considered here works
amazingly well for these properties.

Let the spring constants for the pure AC and BC compounds be k, and kg,
respectively, and the effective alloy spring constant be k, with similar
notations for the bond lengths d,,, dg, and d. When an A atom is embedded in
the medium, all 16 bonds under consideration will relax, and the strain
energy 1s given by

{A) = 3 ky(d — dy)?, (128)

where
k, = 4k, k/(3k, + k). (129)

A similar energy &(B) is obtained, when a B atom is erabedded. The effective
bond length d is obtained from a minimization of the average cluster energy
E = (1 — x)e(A) + xe(B) with respect to d, which yields

d = [(1 — x)kydx + xkodg)/[(1 — )k, + xk,]. (130)

When the alloy is compressed, the alloy bond length is reduced to d(1 — e),
where e i1s a macroscopic strain corresponding to the external pressure. The
pressure-induced strain energy for the 16 bonds in the medium is 6E =
8k(de)?, and SE = 2k(de)* for each cluster. Embedding an A atom in this
compressed medium, one finds the total strain energy for the 16 bonds to be

EA=%k1(d—dA-4de)2. (131)
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To obtain the extra cluster energy d¢(A) induced by the pressure, we subtract
€(A) of Eq. (127) and the background energy for the surrounding 12 bonds
from E, to give

S6(A) = —4k,(d — d,)de + 8k, (de)* — 6k(de)?. (132)

Similarly, the following expression for d¢(B) is obtained when the embedded
atom is B:

06(B) = —ako(d — dg)de + 8k,(de)? — 6k(de)? . (133)

Thus, the change of the average cluster energy that is due to the pressure is
given by 0E = {(de(n)) = (1 — x)ée(A) + xde(B), which, when equated to
2k(de)?, leads to the following self-consistent equation for the effective spring
constant k : k = (1 — x)k, + xk,. The k can now be solved analytically when
both the expression for k; in Eq. (129) and the similar expression for k, are
used. The result is

k= kL1 — 3x(1 — x)(6k/<kD)T, (134)

where (k) = (1 — x)k, + xkg is the mean spring constant and 6k = k, — kg
the difference. It is interesting to compare this result for the 50/50 alloy, ie.,
k = k(1 — 2A2) with the value k(1 — A2/4) in Eq. (123) for the ordered alloys
in the CuAul and chalcopyrite structures. The alloy spring constant is slightly
below the straight-line average, and the bowing is larger for a disordered
alloy than for the corresponding ordered compound. Using the effective
spring constant of Eq. (134), we find that the effective bond lengths for most
alloys also bow slightly below their mean value,

d={d) +4x(1 — x)(d, — dg)(ka — kg)k/[(3k, + k)(3kg + k)] (135)

because the spring constant tends to increase as the bond length decreases.
To compare the calculations above with experimental data for pseudobin-
ary alloys, we were able to find results for GaAlAs (Landolt-Bornstein, 1988),
CdZnTe, CdMnTe, and HgCdTe (Quadri et al., 1986). For GaAlAs, the
following linear x dependences were measured (Landolt-Bornstein, 1988):
Cii =1185+0.14x,C,, = 5.38 + 0.32x, and C,, = 5.94 — 0.05x. This lack
of detectable bowing is expected, because of the nearly equal bond lengths of
the two constituent compounds and small differences in the ¢lastic constants.
The bulk moduli in the three II-VI alloy systems mentioned were obtained
from high-pressure x-ray diffraction data. For HgCdTe, the results are similar
to those for the GaAlAs in that both the bond lengths and the bulk moduli of
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TABLE XV

MEASURED ELASTIC CONSTANTS IN 10! DYNES/CM? OF SiGe ALLOYS BY BUBLIK ET AL (1974)

A“Oy Cx 1 Clz C‘4
Sig 26Geo 1 16.1 + 0.8 8.35 + 0.8 8.55 + 0.4
Siy s4Geg a6 170 + 0.8
Sio 46G€g 36 17.1 + 0.8

HgTe and CdTe are so close that the differences in B between the alloys and
the pure crystals were beyond the experimental resolution. However, a 57, Zn
in CdZnTe alloy was found to give a 159, increase in the B value from the
pure CdTe value and a 10% Mn in CdMnTe gave a 219, decrease (Quadn
et al., 1986). These significantly large changes in the B values caused by
smaller concentrations cannot be explained from the above considerations.

The qualitative model considered above does not apply to the binary alloys
A, _,B,, because in these alloys both the A and B atoms can be found in both
sublattices, and the local bond length arrangement is more complicated than
the pseudobinary alloys. However, one can expect that there are still more
degrees of relaxation in the disordered binaries than in the ordered com-
pounds. Therefore, one would conclude that the bulk modulus of the
disordered 50-50 SiGe alloy would have a smaller value than those tabulated
in Table XIII for the ordered compounds. At least one would not expect the
alloy B values to be significantly larger than the mean values B. However, the
only experimental data available (Bublik et al., 1974), Table XV, show that
all three elastic constants for these alloys at three different concentrations
exceed the values for Si, and that AB/B is as large as 20%,, despite the fact that
the bond length difference between Si and Ge is only about 39, and the
measured alloy lattice constants are only bowed slightly below the average.
This, and the unexplained results for the II-VI alloys, point to the need for a
more systematic study of the elastic properties of semiconductor alloys, both
experimentally and theoretically.

IV. Dislocations and Hardness®

Hardness has proven to be a useful probe of the mechanical properties of
the brittle semiconductors. Here we will use the term hardrnass to refer
specifically to Vickers' hardness, unless otherwise noted. In the Vickers’

8Much of this section is adapted from “Final Report™ (AFOSR-F49620-85-0023) by M. A.
Berding (1988), SRI International, Menlo Park, California.
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hardness measurement, a square pyramidal indenter is used, and the hardness

number is given by the applied load divided by the area of the indentation

(i.e., units of pressure). Hardness has been found to be an intrinsic property of

the material, because it is relatively independent of the applied load. One

advantage of hardness measurements for semiconductors is that, in contrast 3
to bending tests, only small samples are necessary for conventional Vickers’
hardness measurements, or for nanoindenter measurements (Fang et al.,
1990). and relatively thin epitaxial films can be probed. Additionally, unlike
conventional tests used to measure yield stress, hardness measurements can
be made at room temperature, which is far below the usual plastic regime for
most semiconductors. As such, the hardness measurement provides a conve-
nient and usable probe.

The question remains, though, as to the interpretation of the hardness
measurement in semiconductors: Just what property or properties of a
semiconductor are we measuring when we measure hardness? In metals, an
empirical relationship is found between the hardness H and yield stress Y,
such that H = 3Y.

In metals, this relationship can be justified on the basis of continuum
theory, as discussed in McClintock and Argon (1966). In semiconductors
such a simple relationship between H and Y is not necessarily appropriate for
several reasons. During deformation in metals, many slip planes can be active
because the Peierls barriers for dislocation motion in most directions are low.
In contrast, because the bonds in semiconductors are strongly covalent, the
Peierls barriers are high and dislocation in the (111)1/2¢T110) slip system
dominate.

To date, there is no complete quantitative theory of hardness in the
semiconductors in which the temperature dependence, photoplastic effect,
and the alloy hardening effect are included. Sher et al. (1985) proposed a
model of hardness for the semiconductor compound that gives good quanti-
tative agreement with experiment, but this model does not provide an
explanation for several of the observed dependences of hardness. This model
of hardness in semiconductors differs from more conventional interpretations
and suggests that hardness is dominated by dislocation-dislocation interac-
tions, as opposed to dislocation activation and motion terms. We discuss the
results of an improved quantitative model of hardness below.

12. SLIP SYSTEMS
In the dislocation interaction hardness model, Vickers’ hardness is found

to be dominated by the interaction energy of an idealized array of dislo-
cations that has been generated by the indenter. The idealized array
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can be considered as a first approximation to the more realistic dislocation
tangles found experimentally, leading in higher order to an expansion in
dislocation configurations. In this idealized array, no account is taken of the
true slip systems active in the semiconductors. Experiments (Hirsch et al.,
1985) have demonstrated that, in Vickers’ hardness, slip occurs primarily on
the {111}3¢110) glide set, where the threefold symmetry of slip and rosette
lines occurs at the intersection of the {111} planes with the (111) surface.

For indentation on the (111) plane, dislocations can glide on the (111)
plane parallel to the surface or on one of the three other {111} planes with a
total of four active slip planes. Although the detailed analysis differs from that
given previously (Sher et al., 1985), the contribution to the hardness from the
interaction energy is comparable to that previously calculated. This contribu-
tion: to H is directly proportional to the shear coefficient.

13. PEIERLS ENERGY

The Peierls energy is difficult to calculate precisely because of dislocation
charge effects and reconstruction at the dislocation core. In the context of the
hardness measurement we calculate the Peierls energy in order to evaluate
the importance of this contribution to the Vickers’ hardness number.
Although it is generally agreed that dislocations in semiconductors move
through the generation and propagation of double kinks, in the hardness
measurement, the region about the indenter is grossly plastically deformed.
Because the dislocation velocity is low at room temperature (see below), the
large dislocation pile-up model proposed by Sher eral. (1985) may be
approprniate. If the dislocation separation is small, dislocation motion
through kink processes will be suppressed and the dislocations will propagate
as a complete unit.

To get from Configuration A to Configuration B in Fig. 7, we must break a
row of bonds. Since the long-range strain fields should be comparable in the
two configurations as well as in intermediate configurations, the Peierls force
can be calculated from local energy considerations only. The energy to break
a bond at the dislocation core is approximately given by

Uy =2/Vi+ V242 —V,+ g(eg — &), (136)

where V, is the covalent energy, V, the ionic energy, ¢, the metallization
energy, V, the bond overlap energy, n is 1 for III-V and 2 for II-VI
compounds, and &, and ¢f the hybrid energy for the anion and cation,
respectively. The first two terms in Eq. (136) account for the loss of the
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{b) CONFIGURATION B

F1G. 7. Atom configurations during the slip of a dislocation. (a) Configuration A; (b) '
Configuration B.

bonding energy of the two electrons in the breaking bond, the third term
accounts for regaining the repulsive interaction energy of the bond, and the
fourth term accounts for the energy gain to transfer electrons back from the
cation to the anion. We note that the electron orbitals of the atoms at the
dislocation core are left in the sp® hybrids after the bond breaking. The
expression in Eq. (i26) represents a theoretical maximum of the Peierls
energy, since no recopstruction at the core has been included.

To calculate the Peierls energy per unit length, we consider a primary
dislocation in the {110) direction in a zincblende compound. The number of
bonds per unit length in (110) is given by 1/b, where b is Burger’s vector.
Thus, the Peierls energy per unit length is given by

v, fuU,
=Y (2P 137
E b \/8 d’ (137)

where d is the bond length.

We can now calculate the Peierls force, or the force per unit length
necessary to move a dislocation over the potential barrier, as illustrated in
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Fig. 8. The Peierls energy is related to the Peierls force through
E,=F,L, (138)

where

L=

LS T

(139)

is the distance between Configuration A and Configuration B. Solving for F
in terms of U, and d, we arrive at:

3U
F,=Zd—2", (140)
or
33U

Values for U, and 7, are summarized in Table XVI.

Now we incorporate the Peierls energy into the hardness model for low
temperature where the full barrier must be surmounted. The Sher model is
based on energy considerations. The Vickers’ hardness number is given by
the applied force divided by the area of indentation. Multiplying the
numerator and denominator by h, the depth of indentation, we have

:

—fonosocavesr
—foosonnsssn

- X

>
@

F1G. 8. Schematic of the dislocation potential as a function of its position.
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TABLE XVI

CALCULATED PEIERLS STRESS AND HARDNESS FOR VARIOUS ZINCBLENDE SEMICONDUCTORS, WITH
EXPERIMENTAL HARDNESS VALUES FOR COMPARISON®

Ub zp Hp Hinl Hp + Him Hup
C 11.35 23,300 1940 9244 11,184 10,000
Si 5.95 3430 286 1098 1384 1370
Ge 6.67 3440 286 893 179 1000
Sn 5.66 1930 161 - - —
AlP 6.04 3410 284 - - -
GaP 6.15 3500 292 903 1195 940
InP 5.78 2640 220 548 768 520
AlAs 5.90 3000 250 - - 505
GaAs 6.03 3000 256 750 1006 580
InAs 5.64 2340 195 469 664 430
AlSb 5.08 2840 237 524 761 400
GaSb 5.36 2180 182 553 735 450
InSb 4.92 1670 139 365 504 230
ZnS 5.14 3000 250 515 765 -
Cds 4.77 2750 229 288 517 —
HgS 5.68 2590 216 - - —
ZnSe 492 250 209 462 671 137
CdSe 4.59 1890 157 254 411 -
HgSe 4.523 1840 154 232 386 -
ZnTe 442 1720 143 374 517 82
CdTe 4.01 1350 113 222 335 60
HgTe 399 1360 113 230 343 25

*The U values are in eV, and the others in kg/mm?2.

H = E/(W?h), where E = Fh is the energy of indentation, and h is the depth
of the indentation. Including the interaction energy only we have

Gcot 6 cot 4 . .60
=  =— — _— - - 142
H=H,, 6n(l—v)[ ln( 7 )+3+sm 2], (142)

where 0 is one half the indenter angle. To include the Peierls energy, we
consider the total energy necessary to move the dislocations from their initial

to final positions in the idealized model. The hardness is then given by:

H=Hinl+Hp’ (143)
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where

E

Hy = % (144)

is the Peierls contribution to the hardness, and E, is the total Peierls energy
expended. The total length of dislocation to be moved is calculated to be

LT = g —b—z' cos? 6. (145)

The total Peierls energy is given by

E, = %L, = % U‘l’:’a cos? 6. (146)
Thus, we have
Hp=§-%—"cosesin 6. (147)
For 6 = 45°,
Hy=2 22, (148)

Values of H, are summarized in Table XVI. Several features of H, should
be noted. First, we have used a zero-temperature value of the Peierls energy.
Because hardness measurements are typically done at room temperature, one
should take the thermal energy into account; this will reduce the values of H,,
from those listed in Table XVI. Also shown in Table XVI are H,,,, H;,, + H,,
the best theoretical estimate for H, and H,,,. Note that, like H;,, H; is
independent of the applied load, in agreement with experiment. Also note
that H, improves the agreement between theory and experiment for the hard,
nonpolar materials. For the softer, more ionic materials, H is overestimated
by the theory. The overestimation of H may be because of neglect of
dislocation velocity effects and their temperature dependence, as discussed
below.
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14. TEMPERATURE DEPENDENCE

Here we summarize the experimental results and discuss a tentative theory
of the temperature dependence of the hardness.
Several recent studies on the temperature dependence of hardness serve to .
illustrate the behavior. Results for GaAs and Ge are shown in Fig. 9. The
(111) and (100) faces of GaAs have been examined by Hirsch er al. (1985) and
Guruswamy et al. (1986), respectively. Results for the Knoop hardness on the
(100) face of n-type Ge are also shown (Roberts et al., 1986). The (100) face of
GaAs and the Ge show a definite temperature dependence with a relatively
temperature-independent region for T < 450 K and an exponential tempera-
ture dependence for T > 550 K:

H = H eV, (149)
with
U=x024eV (150)

for (100) GaAs. The results for GaAs(111) appear to follow a similar
behavior.

The temperature dependence of hardness suggests that two different
mechanisms may determine hardness in the two temperature regimes. At low
temperature, the hardness is nearly independent of temperature and may be
limited primarily by dislocation interactions. Dislocation mobility is low at
low temperatures, and the tendency for dislocation pile-up is high, At
elevated temperature, the dislocation mobility is increased, so that disloca-
tions move more readily under an applied stress. Therefore, at higher
temperatures, dislocation pile-up is reduced and the hardness is limited by
lattice friction, which shows a strong temperature dependence.

V. Concluding Remarks

The experimental methods available to measure elastic constants vary
greatly in their accuracy and in the size of samples required. Generally, those
that measure the velocity of sound are quite accurate, some yielding elastic
constants to one part in 10°. These methods are also capable of measurin<,
higher-order elastic constants, a subject not treated in this paper. However,
the samples required for these measurements must be large, of the order of
several centimeters, and must be perfect bulk single crystals. Many semicon-
ductors, alloys in particular, are only grown as thin films on disparate
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F1G. 9. Measured hardness of Ge and several GaAs samples as a function of temperature.

substrates. For these examples, the velocity-of-sound methods fail, and the
less accurate Raman and Brillouin scattering techniques become the methods
of choice. Their accuracy is about 1 to 4%, which is adequate for many
practical applications.

Most group 1V, III-V compound, and II-VI compound semiconductors
have been studied, and their elastic constants tabulated. A few remain to be
examined, and several should be reexamined because different experimenters
do not agree on the results. The situation in the pseudobinary alloys is quite
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different. Few alloy systems have been adequately studied; those studied have

mostly fallen into the class of matenals in which the bond lengths of the

constituents nearly match. More interesting results are expected from alloys

with a bond length mismatch. Such studies would yield a wealth of informa-

tion on mechanisms responsible for correlations in these alloys, and perhaps .
even on those responsible for producing the ordered alloys that have been

grown recently.

We have emphasized the utility of various parameterized models for
treating nonideal situations. However, the most powerful new theoretical
developments are in the area of first-principles theories. The advent of self-
consistent local density theories (Hohnberg and Kohn, 1964) more than
20 years ago, and the advances in methods to solve the Schroedinger
equation, are making real applications, as evident from the excellent struc-
tural and elastic properties produced by these theories (see Table II and
Anderson er al., 1985). Recent progress in the full-potential LMTO method
(Methfessel and van Schilfgaarde et al., 1990), in the non-self-consistent
approach (Harris, 1985; Foules and Haydock, 1989; van Schilfgaarde et al.,
1991), and the Carr-Parrinello (1985) quantum molecular dynamics exten-
sion has increased solution speeds into the realm in which it is practical to
attack many mechanical property problems. Moreover, LDA has now been
extended to include many-body corrections (Hybertsen and Louie, 1987), so .
properties that are sensitive to conduction bands can now be computed
accurately. As computational speeds continue to increase, these methods will
evolve into practical engineering tools.
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Ordering in GaAlAs
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Abstract

We calculated excess pair energies of GaAlAs alloys in the bulk and on the surface of a semi-infinite
crystal in a generalized perturbation method using a third-neighbor tight-binding Hamiltonian parameters
derived from an ab-initio density functional theory. This Hamiltonian has produced good electronic and
structural properties for GaAs and AlAs. Calculated excess pair energy for the bulk alloy is nearly zero,
suggesting a disordered equilibrium bulk state, and that for the Ga-Al pair on the (100) surface is found
to be strongly negative. The o bonds are found to be three times more attractive than the =-bonds,
which strongly sug-2st the tendency of ordering in the CuAu I structure observed experimentally. From
the magnitude of this attractive pair interaction the critical temperature for the order-disorder transition

is estimated to be 900K.
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Ordering in semiconductors is of both scientific and technological interest. The phase
transition induced by strain, chemical energy differences, surfaces are of vigorous scientific
study. Properties of alloys grown for materials engineering such as improved band gap.
structural and electronic properties are altered, and mostly favorably, by ordering. For
example, alloys grown for improved electron mobility, will exhibit further dramatic increase
due to ordering.

(An Ban:: Please write here a para or two on status of experimental and
theoretical research on ordering in semiconductors and difficulties to explain
ordering GaAlAs)

Previous calculation of sublimation energy of surface atoms from two extreme surface
coverages concluded that less energy was required to remove a Ga atom from a completed
than from nearly empty (100) GaAs surface (Krishnamurthy et al., 1990a). This suggested
a possibility of repulsive Ga-Ga surface interactions with Ga surrounded by vacancies
as a lower energy state. The repulsive interactions were interpreted to be caused by
charge transfer between dangling Ga and newly exposed As bonds. In such a case, if Al
atoms are preferred at vacant sites due to its lower dangling bond level than Ga, then
growth of ordered GaAlAs is possible by low temperature growth methods such as MBE.
A preliminary calculations carried out with empirical band structures strongly suggested
such a possibility (krishnamurthy et al., 1991).

The empirical band structures, even when they are carefully constructed for the cases
studied, are limited in versatility and accuracy, while most of the existing first principles
calculations are computationally too demanding to study realistic problems. The best
and numerically tractable first principle theory is given by the local density approxima-
tion (LDA) (Hohenberg and Kohn, 1964; Kohn and Sham, 1965). Widely used accurate
methods to solve LDA equations either by plane wave method (Ihm and Cohen, 1980; Niel-
son and Martin, 1985; Wang et al., 1989) or by linearized muffin-tin orbitals (Anderson,
Jepsen, and Sob, 1987; Methfessel and van Schilfgaarde, 1990, Christensen et al., 1990),
and linearized augmented plane waves (Zunger and Freeman, 1977; Mbaye, Ferreira, and
Zunger, 1987) are discouragingly time consuming for the approach considered here.

We use the linear combination of atomic orbitals (LCAO) method in a tight-binding
form whose parameters are obtained from first-principles (Jenson and Sankey, 1987, 1989;
Sankey and Niklewski, 1989; Chelikowsky and Louie, 1984; Vanderbilt and Louie, 1984).
This Hamiltonian uses pseudo-atomic-orbitals, computed self-consistently from a free-atom
calculation within LDA, as the basis. The bulk band structures and total energies are
calculated with an assumption that the charge density in the solid is the superposition
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of atomic charge densities(Harris, 1985). Due to charge transfer in the solid, the wave
function in the I1I-V compounds are more localized than the corresponding atomic wave
function. Linear combination of atomic function do not adequately describe the wave
function in the solid. The basis functions are made more compact by multiplying with a
function (Methfessel,1990)

1
(e(r—rg) +1)

and renormalizing it. These compress parameters, # and ry have been varied to obtain a
local maximum in cohesive energy. As a general rule of guidance, we start with twice the
value of Pauling radius for ry, and a value of 2.5 for 3. The obtained electronic structure
and structural properties such as equilibrium bond length, cobesive energy per bond, and
bulk moduli are in excellent agreement (Krishnamurthy et al., 1992) with experiments and
other calculations.

The studies of preferred phases during layer-by-layer crystal growth involves minimi-
zation free energy with various parameters such as alloy concentration, order parameter,
temperature and so on. Free energy contains two parts, viz., enthalpy and entropy. Ent-
halpy is calculated from the excess energy necessary to form a cluster of two or more atoms.
Entrepy is obtained from the number of ways of arranging such a cluster. Many models
are used to calculate these cluster energies (Zunger, Das sarma, Krishnamurthy). In this
letter, we report an accurate evaluation of these energies with a mathematically rigorous
formalism and first quantitative explanation for observed ordering in GaAlAs alloys.

We calculate the excess energies in an approach known as generalized perturbation me-
thod (GPM), which is computationally straightforward with TB Hamiltonian and is based
on Green’s function (GF) formalism. This method can efficiently calculate cluster ener-
gies of arbitrary size and has been successfully used in phase diagram studies(Ducastelle
et al., 1976, Turchi et al., 1987). Its generalization to use first principles Hamiltonian with
nonorthogonal basis is given here in brief.

With orthogonal basis set a Greens function G is conventionally defined such that
(E+16- H)G =1 is satisfied. When the overlap matrix S is different from unit matrix.
the corresponding GF G™ will satisfy (ES +i6 - H)G™ = S. It can be shown (JAM,
Lohez+Lannoo) that G™ plays the same role as conventional G in the calculation of
physical quantities such as density of states and total energy. For example, the density of
states and total density of states are respectively 31 Im Tr(G™) and 1 Im Tr (In(G™)).
If we define an intermediate GF, G¥ such that (ES + i6 - H)G* = 1, the required G™ is
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G*S. We calculate the surface and bulk G¥ by simply replacing (E-H) by (ES-H) in the
difference equation method (Chen et al., 1989).

The calculation of excess energies in GaAlAs invariably involves clusters of Ga and Al.
In GPM, the reference medium is random alloy and most suitable method of obtaining
band structure of such an alloy is by the coherent potential approximation (CPA). Once a
CPA-alloy is constructed, the cluster, whose excess energy is to be determined, is placed
in the CPA medium. For example, if Ga-Al 'near-neighbor’ pair energy is required, two
near-neighbor CPA atoms are removed and Ga-Al pair is placed there. Then the new
Hamiltonian is H = H + V where H is CPA Hamiltonian and V is the perturbation
potential due to substitution.

When the change in S due to substitution is neglected, new GF using Dyson expansion,

is

Gk = Gt + Gkv Gk
=(1-Gkv)-1Gk (1)

multiplying both sides of Eq.(1) by S,

Gm = Grm + C‘;k vGem
=(1-~Gty)-1Gm (2)

Then the change electronic energy,

AE,, = - / "%mTr(zn(Gm) — In(G™))dE

o0

1 (F —_ B
= ;]mTr/wIn(l -G*V)dE (3)

To simplify further, we write

(1-GkV) = (1-Gkv)(1 -tGE))
t=V(1-Gkv)-! (3)
where G* is sum of diagonal (Gﬁ) and non-diagonal (Gﬁd) in site index. From Eq. (2) and

(3) and using the expansion that In(1-x) = -3, &, we get the expression in the familiar

form,
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© tG* Gk .
BEg = xImTr [In(1-G4V) - LImTry. [ —ud_ad
m

m
sho+ ) v titjty. (4)
ijE..

If the presence of both bulk and surface are considered, the hj is approximately the
difference in site term value. and ic often a dominant meclanism for surface segregaticn.
hy is zero when we consider only surface or only bulk atoms. All constant terms can be
conveniently removed from the free energy calculations. v;;; are the cluster energies that
determine the phase diagrams. Because the excess energies are calculated with reference to
random alloy, just from the sign of Vijk.. for various cluster energies, one can immediately
write-down the phase at T=0 K (Turchi et al., 1987). A minus sign for unlike-atom pair
energies imply ordering and a plus sign for the same pair imply segregation and so on.
However, for higher temperatures the distribution of these clusters should be considered.
The pair interaction energy, for example, between Ga and Al at sites n and m respectively

is,

v§s-Al = - ImTr [ 16 AIGE, Gk 6CEosCH! (5)

where 5C,? /Al is the change in the concentration at site n due to replacement of a CPA
atom by Ga or Al. A factor of 2 should be included in the cases where spin is not explicitly
considered. It should be noted that Eq.(4) and Eq.(5) appear much similar to previously
obtained results (Ducastle et al., 1976). However, contrary to intuition, conventional G is
replaced by G¥ and not by G™.

We find that that the term values and interaction matrix elements of surface atoms
are much different (as much as 2 eV in some cases) from the corresponding bulk values.
In such cases, The surface GF is obtained in two step. First by assuming bulk term
values on the surface, the difference equation method used to obtain the G¥. Then the
difference in term values are considered as local perturbation and the final GF is obtained
with Dyson’s expansion. With different self energies for bulk and surface atoms, CPA
equations are solved. This self consistent procedure requires some generalization, due to
nonorthogonality, and it has been included. An important observation is that the surface
states occur in the gap when surface atoms are treated same as bulk atoms. However,
when the difference in term values are included, the surface states are pushed into the
valence bands, justifying the use of LDA studies of surface related phenomena. Incorrect
conduction bands do not affect the total energy results.
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Above described procedure is used to calculate pair energies in the bulk and on (100),
(111)B surfaces of GagsAlgsAs. In the case bulk Gag5Alp5As, the pair interaction
between Al-Al and Ga-Ga are attractive and that between Ga-Al are repulsive with excess
pair energy of about 1 meV. This tendency towards randomness had been suggested by
other calculations (Zunger) and experiments(?). Similar calculations are carried out on
(111)B surface of GagyAly5As. The excess pair energy is zero within the accuracy of
our calculations. This energy has to be less than zero (in our sign convention) to obtain
ordering. Experiments on (111)B surface of this alloy do not see ordering(Kuan, 1985).

On the (100) surface, there are two kinds of surface bonds. The surface atoms connec-
ted by o bonds are also connected by first neighbor As on the layer below. The 7 bonds
connects the atoms that are connected also by third-neighbor As atoms on the layer be-
low. The excess pair energies which are nearly zero in the bulk, reduces substantially and
become strongly attractive for unlike-pairs on the surface. The pair energy for ¢ bonds is
-100 meV and that for 7 bonds -30 meV. The pair energy for the like pairs have the same
magnitude but repulsive. Such an interaction will yield to ordered growth where every
Ga(Al) will be surrounded by Al(Ga) in CuAg-I phase. The energy parameter, v is defined
as (vga_al - (vG“"“?'v"“’)). Then using average value of the 7 and o bond energies and
the exact expression of 0.57v/kg (kg is Boltzmann constant) for the critical temperature
for order-disorder transition on a square lattice (Onsagar, 1944), we get a value of 860 K.
This is in excellent agreement with experiment where CuAg-I ordering is observed during
the growth on (100) direction at 600 K (Kuan et al., 1985). In the same experiment, no

ordering was observed on growing (111)As surface, also consistent with our calculations.

The cause for attractive interaction between unlike pairs is not transparent from these
calculations as the surface states are dispersed well in the valence bands. However, with a
fitted second-neighbor TB Hamiltonian, one can see that Al dangling states are lower in
energy than Ga dangling states. Thus by charge transfer from Ga to 'near-neighbor’ Al,
surface can lower energy, leading to preference for Ga-Al pairs over other pairs. However,
the energy gained should be larger than Coulomb energy associated with charge transfer.
For pairs beyond near-neighbor sites, Coulomb energy will be Jarger as the charge transfers
over larger distance. In addition, in the absence of Al, Ga-vacancy pairs cause lower energy
as the charge transfer occur between Ga and much deeper As dangling bonds. As AlAs
bonds are slightly stronger than GaAs bonds (cohesive energy -1.84 ev vs -1.64 ev), filling
those vacancies with Al, rather than Ga, will lower energy. Such advantages are not
available for the growth in (111)B direction, as the surface will always be As terminated.

Our quantitative evaluation of excess energies and critical temperature are consistent with
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these plausible physical mechanisms and explain the observed ordering.

In conclusion, we carried out first-principles studies of cluster energies in bulk and
on surfaces. The calculated pair energies on (100) GaAs surfaces, indicate a strongly
attractive interaction for Ga-Al pairs and repulsive interaction for Ga-Ga or A!-Al pairs.
The magnitude and sign of these interactions yield a critical temperature of 860 K and in
excellent agreement with experiments. The charge transfer between the neighboring pairs
arc believed to cause attractive interaction for unlike atoms leading to ordering.

This work was supported by ONR contract N00014-89-K132 and by NASA contract
NAS1-18226-11. A part of the work was done while SK was at Max Planck Institut
fir festkorperforschung, Stuttgart. He thanks Prof. M. Cardona for his hospitality and

Alexander von Humboldt foundation, Bonn, Germany for the fellowship.
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Cohesive energies, elastic constants, band structures, and phase diagram are
calculated to evaluate the In,_T1 Sb alloy (ITA) as a long-wavelength infrared
(LWIR) material compared to Hg, Cd Te (MCT). To obtain a 0.1 eV gap at zero
temperature, the x value for ITA is estimated to be x = 0.083 as compared to
x=0.222for MCT. At thisgap, ITA is more robust than MCT because the cohesive
energies order as InSb>TISb>CdTe>HgTe, and ITA has the stronger bonding
InSb as the majority component. Although TiSb is found to favor the CsCl
structure, ITA is a stable alloy in the zincblende structure for low x values.
However, our phase diagram indicates that it is difficult to grow the 0.1 eV gap
ITA from the melt, because above the eutectic the liquidus curve is flat, and the
solidus drops rapidly. Moreover, the width of the stable concentration range of
the zincblende solid phase shrinks at low temperatures due to the presence of the
CsCl structure.

Key words: Elastic constants, InTISb, HgCdTe, long-wavelength infrared
materials, phase diagram

INTRODUCTION

As growth technology continues to progress, re-
searchers are always in pursuit of better semicon-
ductors. In the area of long-wavelength infrared
(LWIR) semiconductors, efforts have been directed
into three fronts: refinement of the Hg,  Cd Te (MCT)
technology, search for alternative semiconductors,
and use of superlattices and quantum-well struc-
tures.! Among alternative LWIR semiconductors,
obvious III-V candidates are alloys of InSb with TI1Sb
or InBi. An energyv-assisted epitaxial growth tech-
nique? has been used to obtain the InSb,_Bi_ alloy
with a gap in the LWIR range (8 to 12 p), but that
method has never evolved into a practical device
technology. Thus it is interesting to examine the
prospects of the In,_ Tl Sb (ITA) alloy.

Wehave calculated® the structural properties, band
structures, and phase diagram to evaluate ITA as an
infrared (IR) material as compared to MCT. At the
same gap for LWIR application, the band structure of
ITAissimilar tothat of MCT, but ITA is a more robust

{Received October 12, 1992; revised January 13, 1993)

material. The phase diagram of ITA ic more compli-
cated than MCT, because of the presence of a stable
CsCl structure in T1Sb. Our phase diagram indicates
thatit is difficult to grow ITA from the melt. However,
the zincblende solid solution of ITA is stable at low
thallium compositions, which may permit the growth
of ITA at the desired concentration using epitaxial
growth methods. These studies show that ITA is a
potential but challenging IR material deserving more
attention.

LATTICE CONSTANT, COHESIVE ENERGY,
AND ELASTICITY

Table I shows the cohesive energies, atomic vol-
umes, and some elastic constants of CdTe, HgTe,
InSb, and TISb calculated® from the full-potential
linear muffin-tin orbital method* (FP-LMTO) within
the local density approximation (LDA). The calcu-
lated atomic volumes and elastic constants are in
good agreement with available experimental values.
The calculated cohesive energies are consistently
larger than the experimental values by about 0.9 eV,
which is typical in LDA owing mainly to errors in the
free atom. However, the relative cohesive energies
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Table 1. Calculated vs Experimental Values of Atomic Volume (V) , Cohesive Energy (E), Shear
Modulus (¢, ,~«,,), and Bulk Modulus (B)

CdTe HgTe InSb TISb
ZB* Expt ZB* Expt ZB Expt CsCl ZB CsCr
VIAY 33.4 34.2 34.2 334 34.1 33.8 25.6 36.4 271
E ceVipr. of atoms: 5.28 4.40 4.24 3.24 6.46 560 608 5.70 579
c,-¢c,, 110% erg/cm’) 0.20 017 0.19 0.18 0.31 0.31 — 0.17 —
B (10" ergicm " 0.44 0.42 0.44 0.47 0.45 0.48 0.72 0.38 0.49

»zincblende structure
+CsCY structure

Table I1. Direct Band Gaps (in eV) of Several Semiconductors Calculated in the Local Density
Approximation (LDA) and Comparison with Experimental Gaps (Expt)

CdTe GaAs InP
LDA 0.54 0.44 0.47
LDA-SO 0.23 0.32 0.42
Expt 1.60 1.52 1.42
Underest. 1.37 1.20 1.00

InAs InSb HgTe TiSb
-0.39 —0.46 -0.95 ~2.20
053 -0.73 -1.28 (-2.50)
0.42 0.26 -0.31 (-1.52)
0.95 0.99 0.97 (0.98)

Note: Systematic LDA errors are used to deduce the bandgap for TISb. The numbers inside the parentheses are the estimated values
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Fig 1. The parametrized band structures for InSb. TISb. CdTe. and
HgTe along the A (I'-L) and A (I'-X) directions.

are reliable. Our result shows that TISb slightly
favors the CsCl over the zincblende structure at zero
temperature. In the zincblende structure, the cohe-
sive energy magnitudes order as InSb > TISb > CdTe
> HgTe. Although TISb has a weaker shear modulus
than either HgTe or CdTe, InSbis stronger than both.
As will be shown latter, InSb is the majority com-

ponent in ITA for LWIR applications. These results
combined imply that ITA is more robust structurally
than MCT as a LWIR material.

BAND STRUCTURE

Although LDA is known to produce band gaps for
semiconductors that are too small, the gap for TISb
can be deduced by exploiting the systematic nature of
LDA errors as shown in Table II. The first row shows
the band gaps calculated from LDA for several direct-
gap semiconductors. These values do not include the
spin-orbit coupling. The second row shows the LDA
values with the spin-orbit (SO) correction added. The
third row lists the available experimental values. The
fourth row lists the underestimated values, ranging
from 0.95 to 1.37 eV, in LDA. CdTe, and to a certain
extent GaAs, has a larger underestimate owing to its
smaller dielectric constant. TISb should have a dielec-
tric constant close to InSb and HgTe, so an average of
the underestimates of the two, i.e.0.98 eV, can be used
for TISb to obtain an energy gap of -1.52 eV.

This inversion to a negative gap can also be es-
timated and understood in terms of tight-binding
concepts. Firstly, due to a stronger scalar relativistic
potential, the s-level of thallium is about 1.4 eV
deeper than that of indium, which lowers the conduc-
tion minimum of TISb. Secondly, the valence d-level of
thallium is higher than that of indium by about 3 eV,
and is only 10 eV below the top of the valence band. In
thecrystal, the cationd-level interacts with the neigh-
boring p-state of antimony to push up the valence
band maximum (VBM ). This p-d repulsion raises the
VBM in TISb by 0.3 eV higher than that in InSb.
Starting with a 0.25 eV gap for InSb, we subtract from
this value the 0.3 eV’ from the p-d interaction. the 1.4
eV of the s-shift, and 0.05 eV due to a larger spin-orbit
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coupling to arrive at a gap of -1.3 eV for TISb. This p-
d interaction plus the spin-orbit coupling also pro-
duces a 0.35 eV valence band offset between TISband
InSb. The same mechanism is also responsible for the
band inversion and valence band offset between HgTe
and CdTe.

To obtain more details. we have used a hybrid
psudopotential tight- binding method’ to parametnze
the band structures for the hosts and calculate the
band structures for the alloys. The band structures
for the four hosts along A (T-L)and A (I'-X) directions
are plotted in Fig. 1. The gaps for these band struc-
tures are 0.25, -1.56, 1.60, and -0.31 eV, respectively,
for InSb, TISb, CdTe, and HgTe. Based on a scaled-
virtual crystal approximation (SVCA)? the calcu-
lated band gaps for both MCT and ITA at zero tem-
perature are plotted in Fig. 2 as a function of the alloy
concentration x. The predicted x values for the 0.1 eV
gap at zero temperature are x = 0.083 for ITA and, in
close agreement with experiment, x = 0.222 for MCT.
The band structures in the vicinity of the band gap for
ITA and MCT at the 0.1 eV gap are compared in Fig.
3. We can see these two alloys have very similar band
structures at the band gap. This result implies that
ITA has electrical and optical properties similar to
MCT for LWIR applications.

PHASE DIAGRAM

The phase diagram of Hg, Cd Te is very simple;®
onein whichthe liquidus-soliduscurves have asimple
lens shape and the zincblende solid solution is com-
pletely miscible except at very low temperatures. The
presence of a stable CsCl solid phase in TISb consid-
erably complicates the phase diagram of In,_ Tl Sb.
Because of the small lattice mismatch between InSb
and TISb, the free energies of the solid solutions in
both zincblende and CsCl structures can be approxi-
mated by a regular solution model given by F(x) =
Ex)+kT{xlnx +(1-x)ln(1-x)]. and the internal en-
ergy can be written as E(x) = (1-x)E(0)+xE(1)+x(1-
x)Q. The end point energies are given in Table 1. The
mixing enthalpies Q are calculated within LDA using
quasi-random structures’ and the results® give Q, =

2.0

T

Ing _T1,Sb

Hg 1 _xCleO —xTlx

1.5¢1

1.0+
05¢t

0.0 /

-0.5¢

//

BAND GAP (eV)

_1.0 L 4 3 -
-15} 1
-2.0% .

0.0 0.5
HgTe x

1.0 0.0 0.5 1.0
CdTe InSb x TISb

Fig. 2. Calculated band gaps as a function of alloy concentration x for
Hg, .Cd Te and In,_TI Sb at zero temperature.
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32 meV per two atoms for the zincblende structure
and €2, = — meV for the CsCl structure These two
free energy functions produce a large miscibility gap
separaung the zincblende ZB1 alloy from the nearly
pure TISb crvatal in the CsCl structure as shown in
Fig. 4. Also shown are the solidus-liquidus curves
calculated from the regular solution model. In add:-
tion to the above data for the solid solution. the
following data were adopted for the liquid phase:
mixing enthalpy Q = -1000 cal'mole, melting tem-
peratures of 808 and 558K, and enthalpies of melting
of 11878 and 8629 cal/mole respectively for InSb and
T1ISb. The Q value is taken to be the value previousiy
used for MCT,” and the other values for the ZB TISb
are extrapolated from those of InSb* assuming they
scale as Q(TISbYQ(InSb) = Q(HgTevQ(CdTe). Our
phase diagram shows that it is very difficult 1o grow
the 0.1 eV (x = 0.083) ITA from the melt, because
above the eutectic the liquidus curve is rather fla:,
and the solidus drops rapidly. Moreover, the width of
the stable concentration range of the zincblende solid

H T
sboIng_ T.Sb 9y_,Ca,Te
x=0.222

b

x=0.083

ENERGY (eV)

-3 r X | r X
Fig. 3. Companson ot band structures around the band gap for
In,_TiSb and Hg, Cd.Te at the 0.1 eV gap.
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Fig. 4. Phase diagram of in, T1,Sb alloy.
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phase shrinks at low temperatures due to the pres-
ence of the CsCl structure. However, the ZB solid ITA
solution is stable at low x values and moderate tem-
peratures. A metastable alloy at the desired concen-
tration may be obtained using epitaxial growth tech-
niques.

CONCLUSION AND DISCUSSION

Several properties of ITA have been studied. Our
results show that, when compared to MCT as LWIR
material, ITA is superior in structural bonding. com-
parable in electrical and optical properties, but more
difficult to grow. However, our work represents the
first reasonable materials evaluation. The predicted
phase diagram depends heavily on the accuracy of the
energy difference between the CsCl and the zincblende
structures of both InSb and T1Sb, and to a less extent,
on the other parameters used. Further studies are
called for to test these suggestions and to explore the
potential of this LWIR matenal.
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InTISb: An infrared detector material?
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In, _,TL,Sb is proposed as promising infrared matenal. A number of optical and structural
properties are studied within local density-functional theory. The alloy at x=0.09 is estimated
to have a gap of 0.1 eV. Although TISb is found to favor the CsCl structure, the zinc blende alloy
is stable for low x values. A phase diagram is calculated to estimate the regions of stable phases
and explore the conditions for growing narrow-gap In, _, Tl Sb alloys.

The alloy Hg, _,Cd,Te with x=0.22 is currently the
most widely used material for long-wave infrared (LWIR,
8-12 um) focal-plane arrays (FPA). However,
Hg,_,Cd,Te is a weakly bound 1I-V compound with ma-
terials growth and processing problems' dominated by na-
tive defects that limit FPA performance and yield. A stur-
dier alternative to Hg, _,Cd,Te offering a comparable IR
response would significantly benefit FPA costs and perfor-
mance. Here we argue that the III-V alloy In,_,T1,Sb
holds much promise as a suitable, sturdier alternative to
Hg,_,Cd,Te.

InSb, a II1-V zinc blende (ZB) semiconductor with a
band gap of 0.18 eV at room temperature, responds to the
midwave (3-5 um) infrared band and is usually preferred’
to Hg,¢0Cdg 3 Te with a comparable band gap, because
InSb is the more strongly bound. However, the band gap of
InSb is too wide for LWIR applications. Two alternatives
are currently under study to produce III-V based materials
capable of LWIR response: strained layer superlattices®
and multiple quantum well structures.® These materials
must be prepared either by metalorganic vapor deposition
(MOCVD) or by molecular beam epitaxy (MBE). Both
methods are expensive and while advances have been dem-
onstrated, it is not clear that the individual device perfor-
mance, uniformity over an array, and material stability will
better those of Hg,_,Cd,Te.

InSb has the narrowest band gap of the ZB semicon-
ductors. Alloying the Sb with Bi,’ or alloying the In with
Tl can potentially narrow the band gap. In its ground state,
InBi is a tetragonai structure, which limits concentrations
over which the equilibrium alloy is miscible.® Concentra-
tions high enough to narrow the gap into the LWIR range
have been prepared, but only using a difficult Ar energy-
assisted epitaxial growth technique’ that never evolved into
a practical method for a LWIR matenial.

Very little work has been reported on the In,_,T1,Sb
alloy. This letter is devoted to calculation of the materials
properties of In,_,T1_Sb within the framework of density-
functional theory. Questions about the properties of
In, _,T1.Sb center around two key issues. First, stipulating
that the alloy assumes a ZB lattice with either T1 or In
occupying the cation sites, how do the structural and op-
tical properties compare with Hg, _,Cd,Te? Second, our
calculations show that TISb slightly prefers the CsCl lattice
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to the ZB. Under what thermodynamic conditions can
In, _,T1,Sb be grown in a ZB structure?

For the calculations presented here, except where oth-
erwise stated, an all-electron, soft core, full-potential
method of linear muffin tin orbitals (LMTO) was em-
ployed.® A basis of 22 orbitals/atom was used, including
three s, three sets of p, and two sets of d states. This was
sufficient to converge the total energy to an absolute pre-
cision of about 1 mRy/atom. In all cases, enough k-points
were used to converge the mesh to an absolute precision of
better than 0.1 mRy; this required between 30 and 128
points, depending on the crystal structure. Thus, the re-
sults presented here should be very close to exact solutions
of the local density approximation (LDA).

Table 1 shows some calculated properties of CdTe,
HgTe, InSb, and TISb. Experimental data tabulated with
the first three give the reader a sense of the errors to be
expected from these calculations. As is typical in the LDA,
the atomic volume is predicted to within about 2%; the
cohesive energy is overestimated by about 0.9 eV (owing
mainly to errors in the free atom; gradient corrections to
the LDA largely eliminate this error); and the band gap is
underestimated by approximately 0.7 eV, the underesti-
mate larger for CdTe owing to its smaller dielectric con-
stant. Exploiting the systematic trends in errors for the
band gap and cohesive energy, column “Adj"” adjusts those
calculated values for TISb, were it to assume a ZB lattice.

Table I illustrates several points of interest. TISb is
lattice-matched to InSb to within 2%: it has a compara-
tively strong bond, considerably stronger than in HgTe. Its
shear modulus ¢,; —¢,, is rather small for a I11-V material,
possibly indicative of its preference for the CsCl structure
(see below). Probably the most important point concerns
the band gaps. The difference £,(CdTe) — E,(HgTe) =1.9
eV, is comparable to Eg(InSb)—Eg('l'le)=l.8 eV. As-
suming a linear dependence on the gap, Hg, _,Cd,Te has a
100 meV gap at x=0.22, while for In, _,T1 Sb the gap
reaches 100 meV at x=0.09 at 0 K. (At 300 K InSb has a
gap of 0.18 ¢V and it reaches 100 meV at x=0.05.) Thus
the predominant cation in Hg,_,Cd,Te is the heavier,
weakening Hg, while in In;_,T1,Sb it is the lighter and
strengthening In. The cohesive strength of In, _ ,T1,Sb will
be about 50% greater than Hg,; _,Cd,Te; as a consequence,
we expect it to be far more stable and freer of defects.
Because the material is more robust, processing should be
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TABLE 1. Calculated and experimental optical and structural properties for CdTe, HgTe, InSb, and TISb in a ZB lattice at 0 K. Atomic volume {1 is
in A%, cohesive energy per cation E and band gap £, are in ¢V; ¢, —¢,; and bulk modulus B are 10'? erg/cm’. Calculated values for InSb in the CsCl
and TISb in both ZB and CsCl lattices are shown. Column Adj adjusts the calculated values of TISb in the ZB structure for errors in the LDA

CdTe HgTe InSb TiSb
ZB Calc Expt Cale Expt Calc Expt CsCl B Adj CsCl
(4] 334 34.2 342 3134 4.1 338 25.6 36.4 27.1
E 5.28 4.40 4.24 324 6.458 5.60 6.078 5.704 48 $.792
Cn<n 0.20 on 0.19 0.18 0.31 0.31 0.17
B 0.44 0.42 0.44 0.47 0.45 0.48 0.72 0.38 0.49
E 0.54 1.60 —-0.95 -0.30 —0.46 0.26 -2.20 -1.5

much simpler. For example, we anticipate no significant
problem of Tl loss in an annealing step.

The valence band offset is one other point of interest
concerning optical properties of In, _,T1.Sb. A simple es-
timate can be made in the context of the atomic spheres
approximation (ASA). Because the ASA aligns the bands
with respect to a common reference potential (the Made-
lung potential), it forms a good trial potential for an inter-
face between similar materials, and the dipole with respect
to this potential is generally small. If the dipole is zero, the
band offset of two materials is the difference in the valence
band edges, calculated from separate bulk calculations. At
the lattice parameter of InSb, the band offset of TISb/InSb
was calculated to be 0.35 eV. As a comparison, the band
offset of HgTe/CdTe comes out to 0.30 eV in the ASA. In
both cases, the origin of the band offset arises from cou-
pling of the deep d states to the anion p orbitals at I'. The
heavier cation is shallower: it couples more strongly and
exerts a stronger repuision on the valence band maximum.

Next we turn to an examination of the In,_,T1,Sb ZB
alloy. Gererally speaking, ZB alloys A, _,B,C have a dis-
position to spinoidal decomposition into the bulk constit-
uents (AC),_,+ (BC),. But when the AC and BC lattices
match well as in HgCdTe and AlGaAs, strain energy from
accommodating bond-length mismatch is absent and the
energy cost in forming the alloy is quite small. Indeed we
find that to be the case in In,_ T1 Sb.

To show this for the Ing T, (Sb alloy, three structures
were considered: the “CuAu” structure,” and two quasi-
random structures proposed by Zunger and co-workers
which simulate a random alloy (see Table II and Ref. 9).
In the ideal lattice, the energies of the three structures are

TABLE 1. Structural properties of three ordered alloys of Ing (Tl ;Sb.
The QR4 and QR-8 structures are 4- and 8-cation superlattices taken
from Zunger and co-workers.* Short-range correlation functions of QR4
and QR-8 mimic those of the random alloy, and are named *‘quasiran-
dom™ structures. VCA is the virtual crystal average of this table. The
energy of each structure was minimized with respect to the cell volume. E'
is the energy of the structure on an ideal lattice; E' is the energy when the
lattice is allowed to relax.

VCA CuAu QR4 QR-8
a 6.554 6.554 6.554 6.554
E 6.082 6.070 6.070 6.070
E 6.082 6.074 6.074

*Reference 9.
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found to be identical to within 1 meV/cation. In the ideal
lattice these structures are found to be 12 meV less stable
than the VCA average; on allowing the lattice to relax in
the CuAu and the 4-cation quasirandom structure, this
difference dropped to 8 meV/cation. The smallness in de-
viation from the VCA average and the independence of the
energy on crystal structure suggests that the effective alloy
Hamiltonian is weak and well approximated by a simple
Ising model. The internal energy of a random alloy then
assumes a form

E(x)=(1-x)-E{x=0)+x-E(x=1)+Qx(1—x)
(n

with 1=0,=32 meV.

We now turn to the second set of issues, namely the
miscibility of Tl in In,_,T1,Sb in the ZB structure. This
miscibility is limited in InSb by the apparent fact that TISb
prefers the CsCl lattice to the ZB. Table 1 shows that, while
InSb favors the ZB lattice by 380 meV/cation, TISb favors
the CsCl lattice by 88 meV/cation. To examine this in

- T T v T T v
1000 + Liquid CSQ/’«
K00 T T T T ——— //A‘
- No_ fBlia e~ T
¥ ZB
= 600 B
ZB+CsCl
00 :
]
] i - | . 1 Ak i )
=005 02 04 06 08 1
1nSh x TiSh

FIG. 1. Phase diagram of InTISb along the In, _,T1,Sb line. The shaded
region is the desired solid solution of In, _,T1,Sb in the ZB structure. The
solid (changing into dotted) lines demarcate the separation of the ZB
solid solution of In, _,T1,Sb on the left, a very narrow solid solution in the
CsCl structure on the extreme right (see arrow), and a two-phase eutectic
of these two phases (marked “ZB + CsCl1") in the center. (These lines are
shown as dotted above the speculated melting point, as they are no longer
meaningful there.) The dashed lines are our speculated liquidus and soli-
dus; the eutectic point at x=0.8, T=700 K was chosen arbitrarily. The
region marked “ZB + Liq" is a two phase mixture of In, _ , T1,Sb in the ZB
phase and liquid. It is evident from this figure that, even while there exists
a stable phase of In, _,T1,Sb in the ZB structure. the only accessible phase
from the hquid is the eutectic ZB+ CsCl.
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greater detail, we have calculated the total energies of some
ordered alloys of In, ,T1.Sb in the CsCl structure in ad-
dition to those studied in the ZB structure (Table I). Asn
the ZB structure, compounds studied in the CsCl structure
exhibited a very small deviation in the mixing energy from
the virtual crysta) average; the deviation was found to be
slightly negative, but smaller than in the ZB structure.
Thus Eq. (1) also approximately describes the x depen-
dence of the internal energy in the CsCl structure, with
N=0Q,= —4 meV. Using th-se data, we have obtained
that section through the ternary phase diagram which joins
the InSb and TISb binary compositions.

To describe the miscibility of the ZB and CsCl struc-
tures, we approximate the free energy of each structure
with a regular solution model. The free energy of either ZB
phase is then F(x)=(1-x)E(0)+xE(1)+Qx(1-x)
+kT[xlnx+ (1 —x)In(1—-x)}, with =0, or Q. By
constructing common tangent lines between the two free-
energy curves in the usual way, we obtain the solid phase
portion of the phase diagram that exhibits three regions.
As Fig. 1 shows, one region is found in the ZB structure
near the InSb composition, and a corresponding region
very near to the TISb composition in the CsCl structure. A
two-phase eutectic occupies the central and largest part of
the diagram.

Also shown in dotted lines are the hypothetical solidus
and liquidus. Explicit calculation of this portion of the
phase diagram was not attempted here, particularly since
we do not know the melting point of TISb. Some general
observations can be made, however. InSb is known to melt
congruently at 808 K, which fixes the x=0 point of the
liquids. Also our calculations show that the bulk modulus
of TISb in the CsCl structure is comparable to InSb in the
ZB, owing to the compressed atomic volume. According to
Lindeman’s law, melting takes place when lattice distor-
tions reach about 10% of the bond length. Crudely
speaking, the vibrational amplitudes of InSb(AB) and
TISb(CsCl) are comparable, and thus we speculate that
the melting points may also be comparable. It is almost
certain, however, that the solidus near x=0 drops quickly,
owing to a softening of the ZB phase on alloying with TI.

Fortunately, the most important feature of Fig. 1 does
not depend in any major way in the uncertainty in the
liquidus and solidus. There exists below the melting point
a stable region of the In,; _,T1,Sb alloy in the ZB lattice for
T1 concentrations in the range of 5%-15%. On the basis of
Table I this is sufficient to narrow the band gap to the 8-12
um range. Figure 1 suggests why this region may be diffi-
cult or impossible to reach using liquid phase epitaxy. If
the liquidus is flat for a wide concentration range as de-
picted in Fig. 1, and if the solidus falls off rapidly (as it
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almost certainly does). it is extremely difficult to solidify a
crystal in the ZB lattice from the hiquid phase with any
significant amounts of Tl. Indeed, this has been observed
experimentally.'"'’ Nevertheless, a stable phase could exist
according to these calculations, and using other growth
techniques it should be possible to reach it.

To summarize, our calculations show that In, _,T1,Sb
holds much promise as a viable, more robust alternative to
Hg,_,Cd,Te for use in long-wave infrared detectors. A
number of electronic and mechanical properties were cal-
culated for InSb, TISb, and In,_,T1,Sb to support this
argument. Perhaps the most important finding is that a
relatively small amount of Tl (approximately 10%) is
needed to narrow the band gap to the required size. The
-V In,_,TI,Sb is more robust than the II-VI
Hg,_,Cd,Te not only by virtue of it being a III-V com-
pound, but also because it is composed predominantly of
the lighter, strengthening cation. Equally important, these
calculations show that there exists a stable region in the
In,_,T1,Sb plane of the phase diagram for which Tl is
miscible in InSb in concentrations up to 15%-20%.

Note in proof: It has recently come to our attention''
that the binary phase diagram of TISb is more complicated
than the early literature suggests. Nevertheless, we believe
our central conclusion remains valid, namely that there
will be a substantial stable phase of In,_,T1,Sb in the ZB
structure, since that conclusion mainly derives from the
result that InSb strongly favors the ZB phase to the close-
packed one, while TISb only weakly favors a close-packed
phase to the ZB.
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